精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
(x+1)(x-2)
的定义域是集合A,函数 g(x)=lg[x2-(2a+1)x+a2+a]的定义域是集合B.
(1)当a=1时,求集合A、B;
(2)若A∩B=A,求实数a的取值范围.
(1)由题意(x+1)(x-2)≥0所以 A={x|x≤-1或x≥2};
x2-(2a+1)x+a2+a>0 B={x|x<a或x>a+1};
∵当a=1时
∴B={x|x<1或x>2}
(2)由(1)知 A={x|x≤-1或x≥2};
 B={x|x<a或x>a+1};
由A∩B=A得A⊆B,
因此  a>-1且a+1≤2
解得:-1<a≤1,
∴实数a的取值范围是(-1,1].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案