精英家教网 > 高中数学 > 题目详情
19.求证:(1+$\frac{1}{3}$)2$•(1+\frac{1}{5})$2…(1+$\frac{1}{2n+1}$)2<n+1.

分析 运用数学归纳法证明,注意步骤,由n=k+1,运用n=k的结论,借助作差比较法,即可得到.

解答 证明:(数学归纳法).
当n=1时,不等式左边=(1+$\frac{1}{3}$)2=$\frac{16}{9}$<2=右边,不等式成立;
假设n=k时,(1+$\frac{1}{3}$)2$•(1+\frac{1}{5})$2…(1+$\frac{1}{2k+1}$)2<k+1.
当n=k+1时,(1+$\frac{1}{3}$)2$•(1+\frac{1}{5})$2…•(1+$\frac{1}{2k+1}$)2•(1+$\frac{1}{2k+3}$)2
<(k+1)•(1+$\frac{1}{2k+3}$)2
由(k+1)•(1+$\frac{1}{2k+3}$)2-(k+2)=$\frac{-(k+2)}{(2k+3)^{2}}$<0,
可得(k+1)•(1+$\frac{1}{2k+3}$)2<k+2.
则当n=k+1时,原不等式成立.
综上可得,(1+$\frac{1}{3}$)2$•(1+\frac{1}{5})$2…(1+$\frac{1}{2n+1}$)2<n+1.

点评 本题考查数列不等式的证明,考查数学归纳法的运用,考查推理运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在△ABC中,|$\overrightarrow{CB}$|=4,|$\overrightarrow{CA}$|=3,$\overrightarrow{CB}$•$\overrightarrow{AC}$=-6,求∠ACB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\frac{x}{3}$=$\frac{y}{4}$=$\frac{z}{5}$,且x+y+z=24,求x,y,z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c是△ABC的三边长,方程$\frac{27}{4}$x2+3(a+b+c)x+(a2+b2+c2)=0有两个相等实根,请判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义域为(-∞,0)∪(0,+∞)的函数f(x)不恒为0,且对于定义域内的任意实数x,y都有f(xy)=$\frac{f(y)}{x}$+$\frac{f(x)}{y}$成立,则f(x)(  )
A.是奇函数,但不是偶函数B.是偶函数,但不是奇函数
C.既是奇函数,又是偶函数D.既不是奇函数,又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(3)=2,则f(2015)的值为(  )
A.2B.0C.-2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.判断下列角所在的象限.
(1)2141°;
(2)1572°;
(3)935°;
(4)-680°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sinθcosθ=$\frac{1}{3}$,则cos2(θ+$\frac{π}{4}$)的值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设正实数x、y满足条件$\left\{\begin{array}{l}{1+lgx-lgy≥0}\\{lgx+lgy-1≤0}\\{lgy≥0}\end{array}\right.$,则2lgx+lgy的最大值为2.

查看答案和解析>>

同步练习册答案