精英家教网 > 高中数学 > 题目详情

【题目】如图,某景区内有一半圆形花圃,其直径是圆心,且.在上有一座观赏亭,其中.计划在上再建一座观赏亭,记.

(1)当时,求的大小;

(2)当越大,游客在观赏亭处的观赏效果越佳,求游客在观赏亭处的观赏效果最佳时,角的正弦值.

【答案】(1);(2)

【解析】

试题(1)先根据直角三角形解得,再根据正弦定理列关于三角方程,根据同角三角函数关系得,即得的大小;(2)根据正弦定理列关于的函数关系,利用导数求最值,即得结果.

试题解析:(1)设,由题,中,

所以,在中,

由正弦定理得

,所以

,所以

因为为锐角,所以,所以,得

(2)设,在中,

由正弦定理得,即

所以

从而 ,其中

所以

,存在唯一使得

单调增,当单调减,

所以当时,最大,即最大,

为锐角,从而最大,此时.

答:观赏效果达到最佳时,的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量,向量,且函数.

(1)求函数的单调递增区间及其对称中心;

(2)中,角ABC所对的边分别为abc且角A满足.BC边上的中线长为3,求的面积S.

(3)将函数的图像向左平移个长度单位,向下平移个长度单位,再横坐标不变,纵坐标缩短为原来的后得到函数的图像,令函数的最小值为,求正实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求不等式的解集;

(2)若对一切,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年国际乒联总决赛在韩国仁川举行,比赛时间为12131216日,在男子单打项目,中国队准备选派4人参加.已知国家一线队共6名队员,二线队共4名队员.

1)求恰好有3名国家一线队队员参加比赛的概率;

2)设随机变量表示参加比赛的国家二线队队员的人数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)

1)若曲线在点处的切线平行于轴,求的值;

2)求函数的极值;

3)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面平面 的中点.

1)求证: 平面

2)若 ,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种体育比赛的规则是:进攻队员与防守队员均在安全线的垂线上(为垂足),且分别位于距的点和点处,进攻队员沿直线向安全线跑动,防守队员沿直线方向拦截,设交于点,若在点,防守队员比进攻队员先到或同时到,则进攻队员失败,已知进攻队员速度是防守队员速度的两倍,且他们双方速度不变,问进攻队员的路线应为什么方向才能取胜?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C: ,直线l过点.

1)若直线l与圆心C的距离为1,求直线l的方程;

2)若直线l与圆C交于MN两点,且,求以MN为直径的圆的方程;

3)设直线与圆C交于AB两点,是否存在实数a,使得直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为,点EFG分别为棱AB的中点,下列结论中,正确结论的序号是___________.

①过EFG三点作正方体的截面,所得截面为正六边形;

平面EFG

平面

④异面直线EF所成角的正切值为

⑤四面体的体积等于.

查看答案和解析>>

同步练习册答案