精英家教网 > 高中数学 > 题目详情
9.在新年联欢晚会上,游戏获胜者甲和乙各有一次抽奖机会,共有4个奖品,其中一等奖2个,二等奖2个,甲、乙二人依次各抽一次.
(Ⅰ)求甲抽到一等奖,乙抽到二等奖的概率;
(Ⅱ)求甲、乙二人中至少有一人抽到一等奖的概率.

分析 (Ⅰ)利用相互独立事件概率乘法公式能求出甲抽到一等奖,乙抽到二等奖的概率.
(Ⅱ)甲、乙二人中至少有一人抽到一等奖的对立事件是甲、乙二人都抽到二等奖,由此利用对立事件概率计算公式能求出甲、乙二人中至少有一人抽到一等奖的概率.

解答 (本题满分10分)
解:(Ⅰ)∵游戏获胜者甲和乙各有一次抽奖机会,共有4个奖品,
其中一等奖2个,二等奖2个,甲、乙二人依次各抽一次.
∴甲抽到一等奖,乙抽到二等奖的概率:
p1=$\frac{2}{4}×\frac{2}{3}$=$\frac{1}{3}$.
(Ⅱ)甲、乙二人中至少有一人抽到一等奖的对立事件是甲、乙二人都抽到二等奖,
∴甲、乙二人中至少有一人抽到一等奖的概率:
p2=1-$\frac{2}{4}×\frac{1}{3}$=$\frac{5}{6}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式、对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知圆O:x2+y2=4,直线l:mx-y+1=0与圆O交于点A,C,直线n:x+my-m=0与圆O交于点B,D,则四边形ABCD面积的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$
(Ⅰ)求△ABM与△ABC的面积之比
(Ⅱ)若N为AB中点,$\overrightarrow{AM}$与$\overrightarrow{CN}$交于点P且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x+$\frac{1}{2x}$,x∈($\frac{1}{2}$,2),若f(x)-m>0对一切x∈($\frac{1}{2}$,2)恒成立,则实数m的取值范围为(  )
A.(-∞,$\frac{\sqrt{2}}{2}$)B.(-∞,$\sqrt{2}$)C.(-∞,$\frac{3}{2}$)D.($\frac{3}{2}$,$\frac{9}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$lg2+lg5-\root{4}{2}×{8^{0.25}}-{2017^0}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某电影公司2012年大陆电影票房为21亿元,若该公司大陆电影票房的年平均增长率为x,2016年大陆电影票房为y亿元,则y与x的函数关系式为(  )
A.y=84xB.y=21(1+4x)C.y=21x4D.y=21(1+x)4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tan α=$\frac{2}{3}$,求下列各式的值:
(1)$\frac{cosα-sinα}{cosα+sinα}$+$\frac{cosα+sinα}{cosα-sinα}$;
(2)$\frac{1}{sinαcosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合M={x|x2=x},N={x|1<2x<2},则M∪N=(  )
A.(-∞,2]B.(0,1]C.(0,2]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校高三文科600名学生参加了12月的模拟考试,学校为了了解高三文科学生的数学、外语情况,利用随机数表法从中抽取100名学生的成绩进行统计分析,抽出的100名学生的数学、外语成绩如表:
外语
及格
数学8m9
9n11
及格8911
(Ⅰ)若数学成绩优秀率为35%,求m,n的值;
(Ⅱ)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率.

查看答案和解析>>

同步练习册答案