精英家教网 > 高中数学 > 题目详情

【题目】为评估大气污染防治效果,调查区域空气质量状况,某调研机构从两地分别随机抽取了天的观测数据,得到两地区的空气质量指数(AQI),绘制如图频率分布直方图:

根据空气质量指数,将空气质量状况分为以下三个等级:

空气质量指数(AQI

空气质量状况

优良

轻中度污染

中度污染

1)试根据样本数据估计地区当年(天)的空气质量状况优良的天数;

2)若分别在两地区上述天中,且空气质量指数均不小于的日子里随机各抽取一天,求抽到的日子里空气质量等级均为重度污染的概率.

【答案】1274天(2

【解析】

1)从地区选出的20天中随机选出一天,这一天空气质量状况“优良”的频率为0.75,由估计地区当年天)的空气质量状况“优良”的频率为0.75,从而能求出地区当年天)的空气质量状况“优良”的天数.

220天中空气质量指数在内为3个,设为,空气质量指数在内为1个,设为20天中空气质量指数在内为2个,设为,空气质量指数在内为3个,设为,设“两地区的空气质量等级均为“重度污染””为,利用列举法能求出两地区的空气质量等级均为“重度污染”的概率.

解:(1)从地区选出的天中随机选出一天,这一天空气质量状况优良的频率为

估计地区当年(天)的空气质量状况优良的频率为地区当年(天)的空气质量状况优良的天数约为.

2天中空气质量指数在内,为个,设为,空气质量指数在内,为个,设为天中空气质量指数在内,为个,设为,空气质量指数在内,为个,设为,设两地区的空气质量等级均为重度污染””,则基本事件空间

基本事件个数为,包含基本事件个数

所以两地区的空气质量等级均为重度污染的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆左右焦点分别为

若椭圆上的点的距离之和为,求椭圆的方程和焦点的坐标;

关于对称的两点,上任意一点,直线的斜率都存在,记为,求证:之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有两台不同机器生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:

该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.

1)完成下列列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为机器生产的产品比机器生产的产品好;

生产的产品

生产的产品

合计

良好以上(含良好)

合格

合计

2)根据所给数据,以事件发生的频率作为相应事件发生的概率,从两台不同机器生产的产品中各随机抽取2件,求4件产品中机器生产的优等品的数量多于机器生产的优等品的数量的概率;

3)已知优秀等级产品的利润为12/件,良好等级产品的利润为10/件,合格等级产品的利润为5/件,机器每生产10万件的成本为20万元,机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?

附:独立性检验计算公式:.

临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在单位正方体中,点P在线段上运动,给出以下四个命题:

异面直线间的距离为定值;

三棱锥的体积为定值;

异面直线与直线所成的角为定值;

二面角的大小为定值.

其中真命题有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】青岛二中学生民议会在周五下午高峰时段,对公交路甲站和线乙站各随机抽取了位乘客,统计其乘车等待时间(指乘客从等车到乘上车的时间,乘车等待时间不超过分钟).将统计数据按分组,制成频率分布直方图:

假设乘客乘车等待时间相互独立.

1)此时段,从甲站的乘客中随机抽取人,记为事件;从乙站的乘客中随机抽取人,记为事件.若用频率估计概率,求两人乘车等待时间都小于分钟的概率;

2)此时段,从乙站的乘客中随机抽取人(不重复抽取),抽得在的人数为,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在梯形中,,过分别作,垂足分别为.,已知,将梯形沿同侧折起,得空间几何体,如图2.

1)若,证明:平面.

2)若是线段上靠近点的三等分点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是______(填上所有正确命题序号).(1)的极大值点 ;(2)函数有且只有1个零点;(3)存在正实数,使得恒成立 ;(4)对任意两个正实数,且,若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

同步练习册答案