已知函数,点在函数的图象上,过P点的切线方程为.
(1)若在时有极值,求的解析式;
(2)在(1)的条件下是否存在实数m,使得不等式m在区间上恒成立,若存在,试求出m的最大值,若不存在,试说明理由。
科目:高中数学 来源: 题型:
已知函数(),且.
(Ⅰ)试用含有的式子表示,并求的极值;
(Ⅱ)对于函数图象上的不同两点,,如果在函数图象上存在点(其中),使得点处的切线,则称存在“伴随切线”. 特别地,当时,又称存在“中值伴随切线”. 试问:在函数的图象上是否存在两点、使得它存在“中值伴随切线”,若存在,求出、的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2012届北京市北师大附中高三上学期开学测试理科数学试卷 题型:解答题
已知函数,点在函数的图象上,过P点的切线方程为.
(1)若在时有极值,求的解析式;
(2)在(1)的条件下是否存在实数m,使得不等式m在区间上恒成立,若存在,试求出m的最大值,若不存在,试说明理由。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖南省长沙市高三第三次月考文科数学卷 题型:解答题
已知函数(),且.
(Ⅰ)试用含有的式子表示,并求的极值;
(Ⅱ)对于函数图象上的不同两点,,如果在函数图象上存在点(其中),使得点处的切线,则称存在“伴随切线”. 特别地,当时,又称存在“中值伴随切线”. 试问:在函数的图象上是否存在两点、使得它存在“中值伴随切线”,若存在,求出、的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数(),且.
(Ⅰ)试用含有的式子表示,并求的极值;
(Ⅱ)对于函数图象上的不同两点,,如果在函数图象上存在点(其中),使得点处的切线,则称存在“伴随切线”. 特别地,当时,又称存在“中值伴随切线”. 试问:在函数的图象上是否存在两点、使得它存在“中值伴随切线”,若存在,求出、的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com