精英家教网 > 高中数学 > 题目详情

已知函数的定义域为R,其导函数的图像如图所示,则对于任意(),下列结论正确的是(  )

<0恒成立 ②;③

;⑤

A.①③             B.①③④           C.②④             D.②⑤

 

【答案】

D

【解析】

试题分析:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.由此可得函数f(x)的图象,再结合函数图象易得正确答案.

 

解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示. f(x)<0恒成立,没有依据,故①不正确;②表示(x1-x2)与[f(x1)-f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1-x2)与[f(x1)-f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.

考点:导数的运用

点评:本题为导函数的应用,由导函数的图象推出原函数应具备的性质,利用数形结合是解决问题的关键,属基础题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)>0.
(I)试判断并证明f(x)的奇偶性;
(II)试判断并证明f(x)的单调性;
(III)若f(cos2θ-3)+f(4m-2mcosθ)>0对所有的θ∈[0,
π2
]
均成立,求实数m 的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年浙江省温州中学高二下学期期中考试数学(文) 题型:解答题

已知函数的定义域为R,且当时,恒成立,
(1)求证:的图象关于点对称;
(2)求函数图象的一个对称点。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省聊城市高三下学期期初考试文科数学试卷(解析版) 题型:选择题

已知函数的定义域为R,当时,,且对任意的实数R,等式成立.若数列满足,且

(N*),则的值为(     )

A.4024             B.4023             C.4022             D.4021

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三10月月考理科数学卷 题型:选择题

已知函数的定义域为R,它的反函数为,如果互为反函数,且,则的值为(      )

A、           B、0            C、           D、

 

查看答案和解析>>

科目:高中数学 来源:2012届雅安中学高二第二学期期中考试数学试题 题型:选择题

已知函数的定义域为R,当时,,且对任意的实数R,等式成立.若数列满足,且 (N*),则的值为(    ) 

A. 4016         B.4017             C.4018       D.4019

 

查看答案和解析>>

同步练习册答案