精英家教网 > 高中数学 > 题目详情

已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l:x-2y=0的距离为,求该圆的方程.

(x+1)2+(y+1)2=2,或(x-1)2+(y-1)2=2.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆和圆
(1)判断圆和圆的位置关系;
(2)过圆的圆心作圆的切线,求切线的方程;
(3)过圆的圆心作动直线交圆于A,B两点.试问:在以AB为直径的所有圆中,是否存在这样的圆,使得圆经过点?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆与圆交于两点,以为切点作两圆的切线分别交圆和圆两点,延长交圆于点,延长交圆于点.已知

(1)求的长;
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求证:不论m取什么实数,直线l与圆C恒交于两点;
(2)求直线被圆C截得的弦长最小时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,点,直线.
 
(1)求与圆相切,且与直线垂直的直线方程;
(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上的任一点,都有为一常数,试求出所有满足条件的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为r1=13;圆弧C2过点A(29,0).

(1)求圆弧C2所在圆的方程;
(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心与点关于直线对称,直线与圆相交于两点,且,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点.

(1)求椭圆的方程;
(2)求 面积的最大值,并求此时直线的方程.

查看答案和解析>>

同步练习册答案