【题目】设椭圆:(),左、右焦点分别是、且,以为圆心,3为半径的圆与以为圆心,1为半径的圆相交于椭圆上的点
(1)求椭圆的方程;
(2)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点
①求的值;
②令,求的面积的最大值.
【答案】(1)(2)①②
【解析】
(1)运用圆与圆的位置关系,和的关系,计算即可得到,进而得到椭圆的方程;
(2)求得椭圆的方程,①设,,求得的坐标,分别代入椭圆的方程,化简整理,即可得到所求值;
②设,将直线代入椭圆的方程,运用韦达定理,三角形的面积公式,将直线代入椭圆的方程,由判别式大于0,可得的范围,结合二次函数的最值,,的面积为,即可得到所求的最大值.
解:(1)由题意可知,,可得,
又
,
,
即有椭圆的方程为;
(2)由(1)知椭圆的方程为,
①设,,由题意可知,
,由于,
代入化简可得,
所以,即;
②设,,将直线代入椭圆的方程,可得
,由,可得,③
则有,,
所以,
由直线与轴交于,
则的面积为
设,则,
将直线代入椭圆的方程,
可得,
由可得,④
由③④可得,则在递增,即有取得最大值,
即有,即,取得最大值,
由①知,的面积为,
即面积的最大值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的离心率,左、右焦点分别为,,过右焦点任作一条不垂直于坐标轴的直线l与椭圆C交于A,B两点,的周长为.
(1)求椭圆C的方程;
(2)记点B关于x轴的对称点为点,直线交x轴于点D.求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点到其焦点下的距离为10.
(1)求抛物线C的方程;
(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直线PB与CD所成角的大小为,求BC的长;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完n片金片总共需要的次数为an,可推得a1=1,an+1=2an+1.如图是求移动次数在1000次以上的最小片数的程序框图模型,则输出的结果是( )
A. 8B. 9C. 10D. 11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线,,过点的直线分别与直线,交于,其中点在第三象限,点在第二象限,点;
(1)若的面积为,求直线的方程;
(2)直线交于点,直线交于点,若直线的斜率均存在,分别设为,判断是否为定值?若为定值,求出该定值;若不为定值,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com