精英家教网 > 高中数学 > 题目详情

【题目】设椭圆,左、右焦点分别是,为圆心,3为半径的圆与以为圆心,1为半径的圆相交于椭圆上的点

1)求椭圆的方程;

2)设椭圆,为椭圆上任意一点,过点的直线交椭圆两点,射线交椭圆于点

①求的值;

②令,的面积的最大值.

【答案】12)①

【解析】

1)运用圆与圆的位置关系,的关系,计算即可得到,进而得到椭圆的方程;

2)求得椭圆的方程,①设,求得的坐标,分别代入椭圆的方程,化简整理,即可得到所求值;

②设将直线代入椭圆的方程,运用韦达定理,三角形的面积公式,将直线代入椭圆的方程,由判别式大于0,可得的范围,结合二次函数的最值,的面积为,即可得到所求的最大值.

解:(1)由题意可知,,可得

,

,

即有椭圆的方程为

2)由(1)知椭圆的方程为,

①设,,由题意可知,

,由于,

代入化简可得,

所以,

②设,,将直线代入椭圆的方程,可得

,,可得,

则有,,

所以,

由直线轴交于,

的面积为

,,

将直线代入椭圆的方程,

可得,

可得,

由③④可得,递增,即有取得最大值,

即有,即,取得最大值

由①知,的面积为

面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的离心率,左、右焦点分别为,过右焦点任作一条不垂直于坐标轴的直线l与椭圆C交于AB两点,的周长为.

1)求椭圆C的方程;

2)记点B关于x轴的对称点为点,直线x轴于点D.的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点下的距离为10.

(1)求抛物线C的方程;

(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDABADADBCAPABAD=1.

(Ⅰ)若直线PBCD所成角的大小为BC的长;

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)讨论的极值;

(Ⅱ)若曲线和曲线在点处有相同的切线,且当时,,求的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为

A. 254B. 381C. 510D. 765

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完n片金片总共需要的次数为an,可推得a1=1an+1=2an+1.如图是求移动次数在1000次以上的最小片数的程序框图模型,则输出的结果是(  )

A. 8B. 9C. 10D. 11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为菱形,为等边三角形.

(1)求证:

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,过点的直线分别与直线交于,其中点在第三象限,点在第二象限,点

1)若的面积为,求直线的方程;

2)直线交于,直线于点,若直线的斜率均存在,分别设为,判断是否为定值?若为定值,求出该定值;若不为定值,说明理由.

查看答案和解析>>

同步练习册答案