精英家教网 > 高中数学 > 题目详情

【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时(万元).每件商品售价为0.05万元.通过分析,该工厂生产的商品能全部售完.

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

【答案】(1)见解析;(2)100.

【解析】

分析:此题以分段函数为模型建立函数表达式,设千件产品的销售额为万元,当时,年利润;当时,年利润.再分别求每段函数的值域得出结论。

详解:∵每件产品的售价为0.05万元,∴x千件产品的销售额为0.05×1 000x=50x万元.①当0<x<80时,年利润L(x)=50xx2-10x-250=-x2+40x-250=- (x-60)2+950,

∴当x=60时,L(x)取得最大值,且最大值为L(60)=950万元;

②当x≥80时,L(x)=50x-51x+1 450-250=1 200-≤1 200-2=1 200-200=1 000,当且仅当x,即x=100时,L(x)取得最大值1 000万元.

由于950<1 000,

∴当产量为100千件时,该工厂在这一产品的生产中所获年利润最大,最大年利润为

1 000万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线 上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是.

(1)求白球的个数;

(2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)满足2x2f(x)+x3f′(x)=ex , f(2)= ,则x∈[2,+∞)时,f(x)(
A.有最大值
B.有最小值
C.有最大值
D.有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC三个内角A,B,C所对的边分别为a,b,c,若c2sinA=5sinC,(a+c)2=16+b2 , 则△ABC的面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}中,a22a5128.

() 求数列{an}的通项公式;

()bn,且数列{bn}的前项和为Sn360,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲、乙两种产品.已知生产一吨甲产品、一吨乙产品所需要的煤、电以及产值如表所示;又知道国家每天分配给该厂的煤和电力有限制,每天供煤至多56吨,供电至多45千瓦.问该厂如何安排生产,才能使该厂日产值最大?最大的产值是多少?

用煤(吨)

用电(千瓦)

产值(万元)

生产一吨

甲种产品

7

2

8

生产一吨

乙种产品

3

5

11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1=.(1)证明:数列为等比数列,并求数列{an}的通项公式;(2)设cn=(3n+1)an,证明:数列{cn}中任意三项不可能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.

,函数在上的最小值为4,求a的值;

对于中的函数在区间A上的值域是,求区间长度最大的注:区间长度区间的右端点区间的左断点

中函数的定义域是解不等式

查看答案和解析>>

同步练习册答案