精英家教网 > 高中数学 > 题目详情

过点P(0,1)与抛物线y2=x有且只有一个交点的直线有


  1. A.
    4条
  2. B.
    3条
  3. C.
    2条
  4. D.
    1条
B
分析:过点P(0,1)的直线与抛物线y2=x只有一个交点,则方程组只有一解,分两种情况讨论即可:(1)当该直线存在斜率时;(2)该直线不存在斜率时;
解答:(1)当过点P(0,1)的直线存在斜率时,设其方程为:y=kx+1,
,消y得k2x2+(2k-1)x+1=0,
①若k=0,方程为-x+1=0,解得x=1,此时直线与抛物线只有一个交点(1,1);
②若k≠0,令△=(2k-1)2-4k2=0,解得k=,此时直线与抛物线相切,只有一个交点;
(2)当过点P(0,1)的直线不存在斜率时,
该直线方程为x=0,与抛物线相切只有一个交点;
综上,过点P(0,1)与抛物线y2=x有且只有一个交点的直线有3条.
故选B.
点评:本题考查直线与圆锥曲线的位置关系与分类讨论思想,解决基本方法是:(1)代数法,转化为方程组解的个数问题;(2)几何法,数形结合;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0),作两条直线分别交抛的线于A(x1,y1)、B(x2,y2).

(1)求该抛物线上纵坐标为的点到其焦点F的距离;

(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.

查看答案和解析>>

同步练习册答案