精英家教网 > 高中数学 > 题目详情
设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是(  )
A、[-
1
2
1
2
]
B、[-2,2]
C、[-1,1]
D、[-4,4]
分析:根据抛物线方程求得Q点坐标,设过Q点的直线l方程与抛物线方程联立消去y,根据判别式大于等于0求得k的范围.
解答:解:∵y2=8x,
∴Q(-2,0)(Q为准线与x轴的交点),设过Q点的直线l方程为y=k(x+2).
∵l与抛物线有公共点,
有解,
∴方程组
y2=8x
y=k(x+2)

即k2x2+(4k2-8)+4k2=0有解.
∴△=(4k2-8)2-16k4≥0,即k2≤1.
∴-1≤k≤1,
故选C.
点评:本题主要考查了抛物线的应用.涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定理或判别式解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、设抛物线y2=8x的准线与x轴交于点Q,则点Q的坐标是
(-2,0)
;若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是
[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=8x的焦点为F,过F,的直线交抛物线于A(x1,y1),B(x2,y2),则y1y2=(  )
A、8B、16C、-8D、-16

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=8x的焦点为F,过点F作直线交抛物线于A、B两点,若线段AB的中点E到y轴的距离为3,则AB的长为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=8x的准线与x轴交于点Q,若过Q点的直线l与抛物线有公共点,求直线l的斜率的取值范围.

查看答案和解析>>

同步练习册答案