精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线与直线交于两点.

1)当时,求的面积的取值范围.

2轴上是否存在点,使得当变动时,总有?若存在,求点的坐标;若不存在,请说明理由.

【答案】(1)(2)存在符合题意的点,详见解析

【解析】

1)设,将代入C得方程整理得.利用△MON的面积.可得MON的面积的取值范围.
2)直线的斜率分别为,利用根与系数的关系、斜率计算公式可得直线PMPN的倾斜角互补OPM=∠OPN.即可证明.

解:(1)将代入,得

,则

从而.

因为的距离为

所以的面积.

因为,所以.

2)存在符合题意的点,证明如下:

为符合题意的点,直线的斜率分别为.

从而

.

时,有,则直线的倾斜角与直线的倾斜角互补,

,所以点符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)已知向量,求的值.

2)已知共线且方向相同,求x

3)设向量,求当k为何值时,ABC三点共线?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数是函数的反函数.

求函数的解析式,并写出定义域

,判断并证明函数在区间上的单调性:

中的函数在区间内的图像是不间断的光滑曲线,求证:函数在区间内必有唯一的零点(假设为),且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实力相等的甲、乙两队参加乒乓球团体比 赛,规定53胜制(即5局内谁先赢3局就算胜出并停止比赛).

⑴试求甲打完5局才能取胜的概率.

⑵按比赛规则甲获胜的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018安徽江南十校高三3月联考线段为圆 的一条直径,其端点 在抛物线 上,且 两点到抛物线焦点的距离之和为

I)求直径所在的直线方程;

II)过点的直线交抛物线 两点,抛物线 处的切线相交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设两实数不相等且均不为.若函数时,函数值的取值区间恰为,就称区间的一个“倒域区间”.已知函数.

1)求函数内的倒域区间”;

2)若函数在定义域内所有“倒域区间的图象作为函数的图象,是否存在实数,使得恰好有2个公共点?若存在,求出的取值范围:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为.

(Ⅰ)求曲线的直角坐标方程与直线的参数方程;

(Ⅱ)设直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,且短轴长是长轴长的一半.

(1)求椭圆的方程;

(2)经过点作直线,交椭圆于两点.如果恰好是线段的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在 (单位:克)中,其频率分布直方图如图所示.

(1)按分层抽样的方法从质量落在 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:

A.所有蜜柚均以40元/千克收购;

B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

同步练习册答案