º¯Êýf(x)=
x
1-x
(0£¼x£¼1)
µÄ·´º¯ÊýΪf-1£¨x£©£¬ÊýÁÐ{an}ºÍ{bn}Âú×㣺a1=
1
2
£¬an+1=f-1£¨an£©£¬º¯Êýy=f-1£¨x£©µÄͼÏóÔڵ㣨n£¬f-1£¨n£©£©£¨n¡ÊN*£©´¦µÄÇÐÏßÔÚyÖáÉϵĽؾàΪbn£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{
bn
a
2
n
-
¦Ë
an
}
£»µÄÏîÖнö
b5
a
2
5
-
¦Ë
a5
×îС£¬Çó¦ËµÄÈ¡Öµ·¶Î§£»
£¨3£©ÁÊýg(x)=[f-1(x)+f(x)]- 
1-x2
1+x2
£¬0£¼x£¼1£®ÊýÁÐ{xn}Âú×㣺x1=
1
2
£¬0£¼xn£¼1ÇÒxn+1=g£¨xn£©£¬£¨ÆäÖÐn¡ÊN*£©£®Ö¤Ã÷£º
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+¡­+
(xn+1-xn)2
xnxn+1
£¼
2
+1
8
£®
·ÖÎö£º£¨1£©ÏÈÇó³öº¯Êýf£¨x£©µÄ·´º¯Êýf-1(x)=
x
1+x
(x£¾0)
£®an+1=f-1(an)=
an
1+an
£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÓÉf-1(x)=
x
1+x
(x£¾0)
£¬Öª[f-1(x)]¡ä=
1
(1+x)2
£¬ËùÒÔy=f-1£¨x£©Ôڵ㣨n£¬f-1£¨n£©£©´¦µÄÇÐÏß·½³ÌΪy-
n
n+1
=
1
(1+n)2
(x-n)
£¬ÓÉ´ËÈëÊÖÄÜÇó³ö¦ËµÄÈ¡Öµ·¶Î§£®
£¨3£©g(x)=[f-1(x)+f(x)]•
1-x2
1+x2
=[
x
1+x
+
x
1-x
]•
1-x2
1+x2
=
2x
1+x2
£¬x¡Ê(0£¬1)
£®ËùÒÔxn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
£¬ÓÖÒò0£¼xn£¼1£¬Ôòxn+1£¾xn£®ÓÉ´ËÈëÊÖÄܹ»Ö¤Ã÷
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+¡­+
(xn+1-xn)2
xnxn+1
£¼
2
+1
8
£®
½â´ð£º½â£º£¨1£©Áîy=
x
1-x
£¬½âµÃx=
y
1+y
£»ÓÉ0£¼x£¼1£¬½âµÃy£¾0£®
¡àº¯Êýf£¨x£©µÄ·´º¯Êýf-1(x)=
x
1+x
(x£¾0)
£®
Ôòan+1=f-1(an)=
an
1+an
£¬
1
an+1
-
1
an
=1
£®
¡à{
1
an
}
ÊÇÒÔ2ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬¹Êan=
1
n+1
£®£¨4·Ö£©

£¨2£©¡ßf-1(x)=
x
1+x
(x£¾0)
£¬¡à[f-1(x)]¡ä=
1
(1+x)2
£¬
¡ày=f-1£¨x£©Ôڵ㣨n£¬f-1£¨n£©£©´¦µÄÇÐÏß·½³ÌΪy-
n
n+1
=
1
(1+n)2
(x-n)
£¬
Áîx=0µÃbn=
n2
(1+n)2
£®¡à
bn
a
2
n
-
¦Ë
an
=n2-¦Ë(n+1)=(n-
¦Ë
2
)2-¦Ë-
¦Ë2
4
£®
¡ß½öµ±n=5ʱȡµÃ×îСֵ£¬¡à4.5£¼
¦Ë
2
£¼5.5
£®
¡à¦ËµÄÈ¡Öµ·¶Î§Îª£¨9£¬11£©£¨8·Ö£©

£¨3£©g(x)=[f-1(x)+f(x)]•
1-x2
1+x2
=[
x
1+x
+
x
1-x
]•
1-x2
1+x2
=
2x
1+x2
£¬x¡Ê(0£¬1)
£®
ËùÒÔxn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
£¬
ÓÖÒò0£¼xn£¼1£¬Ôòxn+1£¾xn£¨10·Ö£©
ÏÔÈ»1£¾xn+1£¾xn£¾x2£¾
1
2
£®xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
¡Ü
1
4
1
xn+1+
2
xn+1
-2
£¼
1
4
1
2
2
-2
=
2
+1
8

¡à
(xn+1-xn)2
xnxn+1
=
xn+1-xn
xnxn+1
(xn+1-xn)=(xn+1-xn)(
1
xn
-
1
xn+1
)£¼
2
+1
8
(
1
xn
-
1
xn+1
)

¡à
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
++
(xn+1-xn)2
xnxn+1
£¼
2
+1
8
[(
1
x1
-
1
x2
)+(
1
x2
-
1
x3
)++(
1
xn
-
1
xn+1
)]

=
2
+1
8
(
1
x1
-
1
xn+1
)=
2
+1
8
(2-
1
xn+1
)
£¨12·Ö£©
¡ß
1
2
£¼xn+1£¼1
£¬¡à1£¼
1
xn+1
£¼2
£¬¡à0£¼2-
1
xn+1
£¼1

¡à
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
++
(xn+1-xn)2
xnxn+1
=
2
+1
8
(2-
1
xn+1
)£¼
2
+1
8
£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢Ò⹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf(x)=
x1+|x|
£¬ÏÂÁнáÂÛÕýÈ·µÄÊÇ
¢Ü
¢Ü
£®
¢Ùf£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©Éϲ»Êǵ¥µ÷º¯Êý
¢Ú?m¡Ê£¨0£¬1£©£¬Ê¹µÃ·½³Ìf£¨x£©=mÓÐÁ½¸ö²»µÈµÄʵÊý½â£»
¢Û?k¡Ê£¨1£¬+¡Þ£©£¬Ê¹µÃº¯Êýg£¨x£©=f£¨x£©-kxÔÚRÉÏÓÐÈý¸öÁãµã£»
¢Ü?x1£¬x2¡ÊR£¬Èôx1¡Ùx2£¬Ôòf£¨x1£©¡Ùf£¨x2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÄÏ»ãÇø¶þÄ££©ÈýλͬѧÔÚÑо¿º¯Êýf(x)=
x
1+|x|
£¨x¡ÊR£© Ê±£¬·Ö±ð¸ø³öÏÂÃæÈý¸ö½áÂÛ£º
¢Ùº¯Êýf£¨x£©µÄÖµÓòΪ £¨-1£¬1£©
¢ÚÈôx1¡Ùx2£¬ÔòÒ»¶¨ÓÐf£¨x1£©¡Ùf£¨x2£©
¢ÛÈô¹æ¶¨f1£¨x£©=f£¨x£©£¬fn+1£¨x£©=f[fn£¨x£©]£¬Ôòfn(x)=
x
1+n|x|
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£®
ÄãÈÏΪÉÏÊöÈý¸ö½áÂÛÖÐÕýÈ·µÄ¸öÊýÓÐ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=-
x1+|x|
£¬ÔòÂú×ãf£¨2-x2£©+f£¨x£©£¼0µÄxµÄÈ¡Öµ·¶Î§ÊÇ
£¨-1£¬2£©
£¨-1£¬2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
x
1-x
(0£¼x£¼1)
µÄ·´º¯ÊýΪf-1£¨x£©£®ÉèÊýÁÐ{an}Âú×ãa1=1£¬an+1=f-1£¨an£©£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÒÑÖªÊýÁÐ{bn}Âú×ãb1=
1
2
£¬bn+1=(1+bn)2f-1(bn)
£¬ÇóÖ¤£º¶ÔÒ»ÇÐÕýÕûÊýn¡Ý1¶¼ÓÐ
1
a1+b1
+
1
2a2+b2
+
¡­+
1
nan+bn
£¼2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•½ÒÑôһģ£©ÒÑÖªº¯Êýf(x)=
¦Áx
1+x¦Á
(x£¾0£¬¦Á
Ϊ³£Êý£©£¬ÊýÁÐ{an}Âú×㣺a1=
1
2
£¬an+1=f£¨an£©£¬n¡ÊN*£®
£¨1£©µ±¦Á=1ʱ£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö¤Ã÷¶Ô?n¡ÊN*ÓУºa1a2a3+a2a3a4+¡­+anan+1an+2=
n(n+5)
12(n+2)(n+3)
£»
£¨3£©Èô¦Á=2£¬ÇÒ¶Ô?n¡ÊN*£¬ÓÐ0£¼an£¼1£¬Ö¤Ã÷£ºan+1-an£¼
2
+1
8
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸