精英家教网 > 高中数学 > 题目详情
1.已知倾斜角为$\frac{2π}{3}$的直线l过抛物线y=$\frac{1}{4}$x2的焦点,则直线l被圆x2+y2+4y-5=0截得的弦长为3$\sqrt{3}$.

分析 由抛物线的焦点坐标求出直线方程,再求出圆的圆心的半径,利用点到直线的距离公式求出圆心到直线的距离,由此能求出弦长.

解答 解:抛物线y=$\frac{1}{4}$x2的焦点坐标是(0,1),
∴过抛物线y=$\frac{1}{4}$x2的焦点,倾斜角为$\frac{2π}{3}$的直线l的方程为y=-$\sqrt{3}$x+1,即$\sqrt{3}$x+y-1=0,
圆x2+y2+4y-5=0可化为x2+(y+2)2=9,圆心为(0,-2),半径为3,
圆心到直线的距离d=$\frac{3}{\sqrt{3+1}}$=$\frac{3}{2}$,
∴直线l被圆x2+y2+4y-5=0截得的弦长为2$\sqrt{9-\frac{9}{4}}$=3$\sqrt{3}$.
故答案为:3$\sqrt{3}$.

点评 本题考查直线与圆相交的弦长的求法,考查点到直线距离公式的灵活运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin($\frac{π}{3}$+ωx)+cos(ωx-$\frac{π}{6}$)(ω>0),f(x)的最小正周期为π.
(1)求ω的值;
(2)求y=f(x)的单调递增区间;
(3)若x∈[-$\frac{π}{3}$,$\frac{π}{6}$],求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线C的方程是$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1.
(1)求双曲线C的焦点F1,F2的坐标;
(2)如果双曲线C上一点P与焦点F1的距离等8,求点P与焦点F2的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设抛物线C:y2=2px(0<p≤4)的焦点为F,点M在C上,|MF|=5,以MF为直径的圆过点(0,2).
(1)求C的方程;
(2)在抛物线C上求一点T,使T点到直线x-4y+5=0的距离最短;
(3)已知直线l1:4x-3y+6=0和直线l2:x=-1,求抛物线C上的动点P直线l1和直线l2的距离之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设i是虚数单位,则复数z=$\frac{5}{i(i+2)}$的虚部为(  )
A.-2B.2C.-1D.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若椭圆的两个焦点与其中一个短轴端点恰好连成等腰直角三角形,则该椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,过F1作圆${x^2}+{y^2}=\frac{{{{(a-b)}^2}}}{4}$的切线,切点为P,切线与椭圆交于点Q,若$\overrightarrow{O{F_1}}+\overrightarrow{OQ}=2\overrightarrow{OP}$,则椭圆的离心率为$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线l:y=kx+$\sqrt{3}$与椭圆C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=\frac{x^2}{{\sqrt{2-x}}}+lg(x+3)$的定义域为(  )
A.(-3,2]B.[-3,2]C.(-3,2)D.(-∞,-3)

查看答案和解析>>

同步练习册答案