精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为为参数),直线与曲线相交于两点.

)写出曲线的直角坐标方程和直线的普通方程;

)若,求的值.

【答案】)曲线; 的值为.

【解析】试题(1)根据将曲线极坐标方程转化为直角坐标方程:利用代入消元将直线参数方程化为普通方程2)根据直线参数方程几何意义将条件转化为,即,再联立直线参数方程与抛物线方程,利用韦达定理代入化简得

试题解析:(1)由得:

曲线的直角坐标方程为: ,由消去得:

直线的普通方程为:

2)直线的参数方程为为参数),

代入,得到

对应的参数分别为,则是方程的两个解,

由韦达定理得:

因为,所以

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司利用线上、实体店线下销售产品,产品在上市天内全部售完.据统计,线上日销售量、线下日销售量(单位:件)与上市时间 天的关系满足: ,产品每件的销售利润为(单位:元)(日销售量线上日销售量线下日销售量).

(1)设该公司产品的日销售利润为写出的函数解析式;

(2)产品上市的哪几天给该公司带来的日销售利润不低于元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市理论预测2014年到2018年人口总数(单位:十万)与年份(用表示)的关系如表所示:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的回归方程

(3)据此估计2019年该城市人口总数.

(参考数据:

参考公式:线性回归方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数fx)满足:如果对任意的x1x2R,都有f,则称函数fx)是R上的凹函数,已知二次函数fx)=ax2+xaRa≠0

1)当a1x[22]时,求函数fx)的值域;

2)当a1时,试判断函数fx)是否为凹函数,并说明理由;

3)如果函数fx)对任意的x[01]时,都有|fx|≤1,试求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果数列对任意的满足:,则称数列数列”.

1)已知数列数列,设,求证:数列是递增数列,并指出的大小关系(不需要证明);

2)已知数列是首项为,公差为的等差数列,是其前项的和,若数列数列,求的取值范围;

3)已知数列是各项均为正数的数列,对于取相同的正整数时,比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时, .

1)直接写出函数的增区间(不需要证明);

(2)求出函数 的解析式;

3)若函数 求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,(其中 为自然对数的底数, …….

1)令,若对任意的恒成立,求实数的值;

2)在(1)的条件下,设为整数,且对于任意正整数 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,底面的中点,是线段上的一点,且,连接.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

同步练习册答案