精英家教网 > 高中数学 > 题目详情

(1)
(2)在[1,2]上的最小值为
①当
②当时,
③当

解析试题分析:解:   .2分
(1)由已知,得上恒成立,
上恒成立

   .6分
(2)当时,
在(1,2)上恒成立,这时在[1,2]上为增函数
 
在(1,2)上恒成立,这时在[1,2]上为减函数

时,令 
 
  
综上,在[1,2]上的最小值为
①当
②当时,
③当  12分
考点:函数的最值
点评:主要是考查了导数的符号与函数单调性关系的运用,以及利用分类讨论思想来得到最值,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数)
(Ⅰ)若曲线在点处的切线平行于轴,求的值;
(Ⅱ)求函数的极值;
(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时,取得极大值;当时,取得极小值.
的值;
处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 , .  
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)当时,函数上的最大值为,若存在,使得成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线处的切线互相平行,求的值;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)试问函数能否在处取得极值,请说明理由;
(Ⅱ)若,当时,函数的图像有两个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的导数满足,其中
求曲线在点处的切线方程;
,求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求实数的取值范围;
(3)若对任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案