精英家教网 > 高中数学 > 题目详情
(2011•朝阳区二模)设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)数列{bn}满足bn=2an,求b1•b2•…•bn(用含n的式子表示).
分析:(Ⅰ)由a1,a2,a4 成等比数列得:(a1+2)2=a1(a1+6),解得a1=2,即可得到数列{an}的通项公式an的解析式.
(Ⅱ)由bn=22n=4n ,可得b1•b2•…•bn =41+2+…+n,利用等差数列的前n项和公式运算求得最后结果.
解答:解:(Ⅰ)由a1,a2,a4 成等比数列得:(a1+2)2=a1(a1+6).…2分
   解得a1=2.…4分    故数列{an}的通项公式是an=2n(n∈N*).…6分
(Ⅱ)bn=22n=4n (n∈N*). …8分
则b1•b2•…•bn =41+2+…+n        …10分
=4
1
2
n(n+1)
=2n(n+1)(n∈N*).…13分
点评:本题主要考查等比数列的定义和性质,等差数列的通项公式、前n项和公式的应用,求出an=2n,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知全集U=R,集合A={x|2x>1},B={ x|
1
x-1
>0 }
,则A∩(CUB)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)设函数f(x)=lnx+(x-a)2,a∈R.
(Ⅰ)若a=0,求函数f(x)在[1,e]上的最小值;
(Ⅱ)若函数f(x)在[
12
,2]
上存在单调递增区间,试求实数a的取值范围;
(Ⅲ)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)在长方形AA1B1B中,AB=2A1=4,C,C1分别是AB,A1B1的中点(如图).将此长方形沿CC1对折,使平面AA1C1C⊥平面CC1B1B(如图),已知D,E分别是A1B1,CC1的中点.
(Ⅰ)求证:C1D∥平面A1BE;
(Ⅱ)求证:平面A1BE⊥平面AA1B1B;
(Ⅲ)求三棱锥C1-A1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知cosα=
3
5
,0<α<π,则tan(α+
π
4
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知函数f(x)=2sinx•sin(
π
2
+x)-2sin2x+1
(x∈R).
(Ⅰ)求函数f(x)的最小正周期及函数f(x)的单调递增区间;
(Ⅱ)若f(
x0
2
)=
2
3
x0∈(-
π
4
π
4
)
,求cos2x0的值.

查看答案和解析>>

同步练习册答案