精英家教网 > 高中数学 > 题目详情
4.已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,记数列{cn}的前n项和Tn.若${T_n}≤\frac{2014}{2015}$,求整数n的最大值.

分析 (Ⅰ)由5S1,S3,3S2成等差数列,可得2S3=5S1+3S2,化简得2q2-q-6=0,解出即可得出.
(Ⅱ)由bn=log2an得bn=n,可得${c_n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,利用“裂项求和”方法可得Tn,进而得出.

解答 解:(Ⅰ)∵5S1,S3,3S2成等差数列,∴2S3=5S1+3S2,…(2分)
即$2({a_1}+{a_1}q+{a_1}{q^2})=5{a_1}+3({a_1}+{a_1}q)$,
化简得2q2-q-6=0,
解得q=2或$q=-\frac{3}{2}$(舍),
∴{an}的通项公式为${a_n}={2^n}$.…(5分)
(Ⅱ)由bn=log2an得bn=n,∴${c_n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}=\frac{n}{n+1}$…(8分)
若${T_n}≤\frac{2014}{2015}$,则$\frac{n}{n+1}≤\frac{2014}{2015}$,n≤2014,
∴nmax=2014.…(12分)

点评 本题考查了“裂项求和法”、等比数列的定义通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{\sqrt{10}}{10}$,则实数m=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等比数列{an}中,a1+an=82,a3•an-2=81,且数列{an}的前n项和Sn=121,则此数列的项数n等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法中
①命题“存在x∈R,2x≤0”的否定是“对任意的x∈R,2x>0”;
②y=x|x|既是奇函数又是增函数;
③关于x的不等式a<sin2x+$\frac{2}{si{n}^{2}x}$恒成立,则a的取值范围是a<3;
其中正确的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0,b>0,且$\sqrt{3}$为3a与3b的等比中项,则$\frac{ab}{4a+9b}$的最大值为(  )
A.$\frac{1}{24}$B.$\frac{1}{25}$C.$\frac{1}{26}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图一块长方形区域ABCD,AD=2,AB=1,在边AD的中点O处有一个可转动
的探照灯,其照射角∠EOF始终为$\frac{π}{4}$,设∠AOE=α,探照灯照射在长方形ABCD内部区域的面积为S;
(1)当$0≤α<\frac{π}{2}$时,求S关于α的函数关系式;
(2)当$0≤α≤\frac{π}{4}$时,求S的最大值;
(3)若探照灯每9分钟旋转“一个来回”(OE自OA转到OC,再回到OA,称“一个来
回”,忽略OE在OA及OC处所用的时间),且转动的角速度大小一定,设AB边上有一点G,且$∠AOG=\frac{π}{6}$,求点G在“一个来回”中被照到的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正项数列{an}满足:an2+(1-n)an-n=0,若bn=$\frac{1}{(n+1){a}_{n}}$,数列{bn}的前n项和为Tn,则T2016=$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)对任意的x∈R都有f(x+3)=-f(x+1),且f(1)=2017,则f(f(2017)+2)+1=(  )
A.-2017B.-2016C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1..设数列{an}满足a2+a4=12,点pn(n,an)对任意的n∈N+,都有$\overline{{p_n}{p_{n+1}}}=(1,2)•$
(1)求数列{an}的通项公式an
(2)若数列{bn}满足an=log2(bn+2),求数列$\{\frac{4^n}{{{b_n}{b_{n+1}}}}\}$的前n项和Tn,并证明$\frac{1}{7}≤{T_n}<\frac{1}{6}•$.

查看答案和解析>>

同步练习册答案