精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求直线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)已知,直线与曲线交于 两点,若,求的值.

【答案】(Ⅰ) .

(Ⅱ).

【解析】试题分析:(Ⅰ)消去参数,即可得到直线的普通方程,在利用极坐标与直角坐标的互化,即可得到直线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)将直线的参数方程与的直角坐标方程联立,求得,进而得到,再由题设,即可求解的值.

试题解析:

(Ⅰ)由消去参数,得

得直线的极坐标方程为

,得

代入,得.

(Ⅱ)将直线的参数方程与的直角坐标方程联立并整理得

设点 分别对应参数 ,则 恰为上述方程的根,

可得,得.

,所以

,得

,解得(舍去).

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.

某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).

(Ⅰ)求物理原始成绩在区间(47,86)的人数;

(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.

(附:若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“水是生命之源”,但是据科学界统计可用淡水资源仅占地球储水总量的,全世界近人口受到水荒的威胁.某市为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨):一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)设该市有60万居民,估计全市居民中月均用水量不低于2.5吨的人数,并说明理由;

(3)若该市政府希望使的居民每月的用水不按议价收费,估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量=(1x),=(2x+3,-x),xR.

1)若,求x的值;

2)若,求|-|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)若函数在点处的切线与直线平行,求实数的值;

(2)若函数上单调递增,求实数的取值范围;

(3)在(1)的条件下,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若a=0时,求函数的零点;

(2)若a=4时,求函数在区间[2,5]上的最大值和最小值;

(3)当时,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,且成等差数列

1)若,求的面积

2)若成等比数列,试判断的形状

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的奇函数.

(1)求的值;

(2)证明上单调递减;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD - A1B1C1D1的棱长为2 EFG分别为BCCC1BB1的中点,则(

A.直线与直线AF垂直B.直线A1G与平面AEF平行

C.平面截正方体所得的截面面积为D.C与点G到平面AEF的距离相等

查看答案和解析>>

同步练习册答案