【题目】如图所示,在四棱锥中,平面平面,底面是正方形,且, .
(Ⅰ)证明:平面平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)见解析(Ⅱ).
【解析】试题分析:
(Ⅰ)利用面面垂直的性质定理可得平面.据此有,结合可得平面.最后利用面面垂直的判定定理可得平面平面.
(Ⅱ)取的中点为, 的中点为,连接,以的方向分别为轴, 轴, 轴的正方向建立空间直角坐标系,据此可得平面的一个法向量为,平面的一个法向量为,据此计算可得二面角的余弦值为.
法2:若以为原点,建立空间直角坐标,则面的法向量面的法向量,计算可得为钝角,则余弦值为.
试题解析:
(Ⅰ)证明:∵底面为正方形,∴.
又∵平面平面,∴平面.
又∵平面,∴.
∵, ,∴平面.
∵平面,∴平面平面.
(Ⅱ)取的中点为, 的中点为,连接
易得底面,
以为原点,以的方向分别为轴, 轴, 轴的正方向建立空间直角坐标系,如图,不妨设正方形的边长为2,可得, , ,
设平面的一个法向量为
而,
即
取得
设平面的一个法向量为
而,
则即取得
由图知所求二面角为钝角
故二面角的余弦值为.
法2:若以为原点,建立空间直角坐标,如图,
不妨设正方形的边长为2
可得面的法向量
面的法向量
由图可得为钝角
∴余弦值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a﹥b﹥0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的焦点的坐标为, 的坐标为,且经过点, 轴.
(1)求椭圆的方程;
(2)设过的直线与椭圆交于两不同点,在椭圆上是否存在一点,使四边形为平行四边形?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教育局对该市普通高中学生进行学业水平测试,试卷满分120分,现从全市学生中随机抽查了10名学生的成绩,其茎叶图如下图所示:
(1)已知10名学生的平均成绩为88,计算其中位数和方差;
(2)已知全市学生学习成绩分布服从正态分布,某校实验班学生30人.
①依据(1)的结果,试估计该班学业水平测试成绩在的学生人数(结果四舍五入取整数);
②为参加学校举行的数学知识竞赛,该班决定推荐成绩在的学生参加预选赛若每个学生通过预选赛的概率为,用随机变量表示通过预选赛的人数,求的分布列和数学期望.
正态分布参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏.
(1)求甲拿到礼物的概率;
(2)设表示甲参加游戏的轮数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,圆的圆心坐标为,半径为2.以极点为原点,极轴为的正半轴,取相同的长度单位建立平面直角坐标系,直线的参数方程为(为参数).
(1)求圆的极坐标方程;
(2)设与圆的交点为, 与轴的交点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆()的左、右焦点分别为、,设点,在中, ,周长为.
(1)求椭圆的方程;
(2)设不经过点的直线与椭圆相交于、两点,若直线与的斜率之和为,求证:直线过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为,点为椭圆上的一个动点,试根据面积的不同取值范围,讨论存在的个数,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com