精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)若函数R上的单调增函数,求实数a的取值范围;

2)设 的导函数.

①若对任意的,求证:存在使

②若,求证:

【答案】(1) ;(2)①.证明见解析;②.证明见解析.

【解析】试题分析:(1由题意, 恒成立,根据等价为恒成立,即可求得得取值范围;(2)①分别求得,若,则存在,使,从而得,取,则,即可证明;②不妨设,令,则,由(1)知函数单调递增,则从而,根据,推出,只需证明成立,即只需证明成立,设,求得函数的单调性,即可证明.

试题解析:(1)由题意, 恒成立.

恒成立,

,从而

2,则

,则存在,使,不合题意.

,则

此时

∴存在,使

②依题意,不妨设,令,则

由(1)知函数单调递增,则从而

下面证明,即证明,只要证明

,则恒成立.

单调递减,故,从而得证.

,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标制成下图其中”表示甲村贫困户,“”表示乙村贫困户.

则认定该户为“绝对贫困户”,若则认定该户为“相对贫困户”,若则认定该户为“低收入户”;

则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.

1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户的概率;

2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望

3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100~110的学生数有21人。

(Ⅰ)求总人数N和分数在110~115分的人数n;

(Ⅱ)现准备从分数在110~115分的n名学生(女生占)中任选2人,求其中恰好含有一名女生的概率;

(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩。

数学

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?

附:对于一组数据其回归线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,解答下列问题:

(1)求输入的的值分别为时,输出的的值;

(2)根据程序框图,写出函数)的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在校体育运动会中,甲乙丙三支足球队进行单循环赛(即每两队比赛一场),共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每场比赛中,甲胜乙的概率为甲胜丙的概率为乙胜丙的概率为

1)求甲队获第一名且丙队获第二名的概率;

2)求在该次比赛中甲队至少得3分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,网格纸上小正方形的边长为1,粗实线和虚线画出的是某几何体的三视图,则该几何休的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建筑公司打算在一处工地修建一座简易储物间.该储物间室内地面呈矩形形状,面积为,并且一面紧靠工地现有围墙,另三面用高度一定的矩形彩钢板围成,顶部用防雨布遮盖,其平面图如图所示.已知该型号彩钢板价格为100/米,整理地面及防雨布总费用为500元,不受地形限制,不考虑彩钢板的厚度,记与墙面平行的彩钢板的长度为.

1)用表示修建储物间的总造价(单位:元);

2)如何设计该储物间,可使总造价最低?最低总造价为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国Ⅱ卷)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCDABBCADBADABC90°EPD的中点.

(1)证明:直线CE∥平面PAB

(2)M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角MABD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线为

)若直线的斜率为,求函数的单调区间.

)若函数是区间上的单调函数,求的取值范围.

查看答案和解析>>

同步练习册答案