精英家教网 > 高中数学 > 题目详情
2.求过圆x2+y2+2x-4y-5=0和直线2x+y+4=0的交点且面积最小的圆的方程.

分析 由题意可知,弦长为直径的圆的面积最小.求出半弦长,就是最小的圆的半径,求解即可.

解答 解:圆的圆心坐标为(-1,2),半径为:$\sqrt{10}$;弦心距为:$\frac{|-2+2+4|}{\sqrt{5}}$=$\frac{4\sqrt{5}}{5}$,弦长为:2$\sqrt{10-\frac{16}{5}}$=2$\sqrt{\frac{34}{5}}$,
过圆x2+y2+2x-4y-5=0的圆心和直线2x+y+4=0垂直的直线方程为:x-2y+5=0.
最小的圆的圆心为x-2y+5=0与直线2x+y+4=0的交点,即:(-$\frac{13}{5}$,$\frac{6}{5}$),
所以所求面积最小的圆方程为:(x+$\frac{13}{5}$)2+(y-$\frac{6}{5}$)2=$\frac{34}{5}$.

点评 本题是基础题,考查直线与圆的位置关系,圆的面积最小就是圆的半径最小,求出圆心坐标,求出半径即可求出圆的方程,是这一类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,且满足$\frac{acosB+bcosA}{c}$=2cosC.
(1)求角C的大小;
(2)若△ABC的面积为2$\sqrt{3}$,a+b=6,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知两点M(0,2),N(-3,6)到直线l的距离分别为1和3,则满足条件的直线l的条数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx+$\frac{a}{x}$(a>0).
(Ⅰ)求函数f(x)在[1,+∞)上的最小值;
(Ⅱ)若存在三个不同的实数xi(i=1,2,3)满足f(x)=ax.
(i)证明:?a∈(0,1),f($\frac{{a}^{2}}{2}$)>$\frac{{a}^{3}}{2}$;
(ii)求实数a的取值范围及x1•x2•x3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)是R上的奇函数,当x>0时,f(x)=2x+ln$\frac{x}{4}$,记an=f(n-5),则数列{an}的前8项和为-24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求过点P(-1,3),并且在两轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知方程3-x+1-|lgx|=0的两根为x1,x2,且x1>x2,则x1,$\frac{1}{{x}_{1}}$,$\frac{1}{{x}_{2}}$的大小关系为$\frac{1}{{x}_{1}}$<x1<$\frac{1}{{x}_{2}}$.(用“<”号连接)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知z∈C,若A=$\frac{{z}^{2}-{z}^{-2}}{2i}$,B=z•$\overline{z}$,则A和B之间的大小关系是设z=a+bi,当${a}^{2}<\frac{1}{2}$时,A>B;当a2=$\frac{1}{2}$时,A=B;当${a}^{2}>\frac{1}{2}$时,A<B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过点M(-2,0)的直线l与圆x2+y2=1交于A、B两点,则线段AB的中点P的轨迹的长度为2π.

查看答案和解析>>

同步练习册答案