精英家教网 > 高中数学 > 题目详情
15.设U={2,5,7,8},A={2,5,8},B={2,7,8},则∁U(A∪B)等于(  )
A.{2,8}B.C.{5,7,8}D.{2,5,7,8}

分析 求出并集,求和求解补集即可.

解答 解:U={2,5,7,8},A={2,5,8},B={2,7,8},则A∪B={2,5,7,8},
U(A∪B)=∅.
故选:B.

点评 本题考查集合的基本运算,并集以及补集的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(sinωx+cosωx)2+$\sqrt{3}$(sin2ωx-cos2ωx),(ω>0)的最小正周期为π.
(1)求ω的值及f(x)的单调递增区间;
(2)在锐角△ABC中,角ABC所对的边分别为abc,f (A)=$\sqrt{3}$+1,a=2,且b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在如图所示的多面体PMBCA中,平面PAC⊥平面ABC,△PAC是边长为2的正三角形,PM∥BC,且BC=4,$AB=2\sqrt{5}$.
(1)求证:PA⊥BC;
(2)若多面体PMBCA的体积为$2\sqrt{3}$,求PM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(文) 已知数列{an}的前n项和为Sn,且an=$\frac{1}{(n+1)(n+2)}$,则S2015=$\frac{2015}{4034}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是②④(写出所有正确命题的编号).
①当0<CQ<$\frac{1}{2}$时,S为平行四边形;
②当CQ=$\frac{1}{2}$时,S为等腰梯形;
③当CQ=$\frac{3}{4}$时,S与C1D1的交点R满足C1R=$\frac{1}{4}$
④当CQ=1时,S的面积为$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}满足a1=1,Sn=n,则a2012=(  )
A.1B.2010C.2011D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线f(x)=x3+$\sqrt{x}$在点(1,2)处的切线方程为(  )
A.4x-y-2=0B.7x-2y-3=0C.3x-y-1=0D.5x-y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四种说法:
(1)函数y=ax(a>0且a≠1)与函数$y={log_a}{a^x}(a>0$且a≠1)的定义域相同;
(2)函数y=x2与函数y=3x的值域相同; 
(3)函数$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$与函数$y=\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$均是定义在(-∞,0)∪(0,+∞)上的奇函数; 
(4)函数y=(x-1)2与函数y=2x-1在(0,+∞)上都是奇函数.
其中正确说法的序号是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的通项公式an=n+1
(1)求证:sin$\frac{π}{a_n}≥\frac{2}{a_n}$;
(2)设数列$\left\{{sin\frac{π}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为Sn,求证:$\frac{1}{3}<{S_n}<\frac{π}{2}$.

查看答案和解析>>

同步练习册答案