分析 (1)由f(1),解方程和特殊三角函数值,即可得到;
(2)运用余弦函数的性质和参数分离,结合函数的单调性和奇偶性,即可得证.
解答 解:(1)$f(1)=\frac{{3\sqrt{2}}}{4}$,${2^{1+cosα}}-{2^{-1+cosα}}=\frac{{3\sqrt{2}}}{4}$,
${2^{cosα}}=\frac{{\sqrt{2}}}{2}$…(2分)
$cosα=-\frac{1}{2}$…(3分)
由0≤α≤π,
∴$α=\frac{2π}{3}$…(7分)
(2)证明:∵m<1,若|cosθ|≠1,则$\frac{1}{{1-|{cosθ}|}}≥1$,…(9分)
∴$m<\frac{1}{{1-|{cosθ}|}}$,m(|cosθ|-1)>-1,m|cosθ|>m-1,
又|cosθ|=1时左式也成立,∴m|cosθ|>m-1…(11分)
由(1)知,$f(x)={2^{x-\frac{1}{2}}}-{2^{-x-\frac{1}{2}}}$,在x∈R上为增函数,且为奇函数,…(13分)
∴f(m|cosθ|)>f(m-1)∴f(m|cosθ|)+f(1-m)>0…(15分)
点评 本题考查三角函数的求值和不等式的证明,考查参数分离和运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $ω=\frac{π}{8}{,_{\;}}φ=\frac{3π}{4}$ | B. | $ω=\frac{π}{8}{,_{\;}}φ=\frac{π}{4}$ | C. | $ω=\frac{π}{4}{,_{\;}}φ=\frac{π}{2}$ | D. | $ω=\frac{π}{4}{,_{\;}}φ=\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 梯形 | B. | 平行四边形 | C. | 矩形 | D. | 菱形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [1,+∞) | B. | (1,+∞) | C. | $[\frac{1}{2e-1},+∞)$ | D. | $(\frac{1}{2e-1},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com