精英家教网 > 高中数学 > 题目详情
已知条件p:A={x∈R|x2+ax+1≤0},条件q:B={x∈R|x2-3x+2≤0}.若¬p是¬q的充分不必要条件,求实数a的取值范围.
分析:根据一元二次不等式的性质,求出命题p和q,根据¬p是¬q的充分不必要条件,可以根据充要条件的定义求解.
解答:解:∵条件q:B={x∈R|x2-3x+2≤0},A={x∈R|x2+ax+1≤0},要保证集合A有解,△>0
∴B={x|1≤x≤2},A={x|
-a-
a2-4
2
≤x≤
-a+
a2-4
2
},
∵¬p是¬q的充分不必要条件,
∴q⇒p,p推不出q,
△=a2-4>0
-a+
a2-4
2
>2
-a-
a2-4
2
<1

解得,a<-2,
当a=-2,A={x|x=1},符合题意;
实数a的取值范围为a≤-2
点评:此题主要考查不等式的求解及充分条件和必要条件的定义,是一道基础题,考查的知识点比较简单;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知条件p:A={x∈R|x2+ax+1≤0},条件q:B={x∈R|x2-3x+2≤0}.若¬q是¬p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:A=x∈R||2x-1|≤a(a>0),条件q:B=x∈R|x2-3x-4≤0.若p是q的充分但不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:A={x|2a≤x≤a2+1},条件q:B={x|x2-x-2≤0},若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:A={x|2a≤x≤a2+1},条件q:B={x|x2-3(a+1)x+2(3a+1)≤0}.若条件p是条件q的充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案