精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知函数 是自然对数的底数,).
(1)当时,求的单调区间;
(2)若在区间上是增函数,求实数的取值范围;
(3)证明对一切恒成立.
(1)在区间上单调递增,在区间上单调递减。
(2);(3)
本试题主要是考查了导数在研究函数中的 运用。利用导数的符号判定函数单调性和利用单调性逆向求解参数的范围,和不等式的证明。
(1)首先求解定义域和导数,然后令导数大于零,小于零得到单调区间。
(2)因为在区间上是增函数,则说明函数在给定区间的导函数恒大于等于零,利用分离参数的思想求解参数的取值范围。
(3)利用第一问中函数的结论,令,那么所以上为减函数,可得对于任意,都有,故有
,放缩法证明不等式。
解:(1)当时,

,……………………………………………..4分
所以,在区间上单调递增,在区间上单调递减。
(2)
由题意得当时,恒成立。
,有,得
所以的范围是…………………………………………8分
(3)令
所以上为减函数,对于任意,都有,故有

.                          ………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数y=f(x)在定义域(—1+∞)内满足f(o)=0,且f(x)= ,(f(x))是f(x)的导数)
(Ⅰ)求f(x)的表达式.
(Ⅱ)当a=1时,讨论f(x)的单调性
(Ⅲ)设h(x)=(ex—P)2+(x-P)2,证明:h(x)≥

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分14分)设函数
(1)设曲线在点(1,)处的切线与x轴平行.
① 求的最值;
② 若数列满足为自然对数的底数),
求证: .
(2)设方程的实根为
求证:对任意,存在使成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数是定义在R上的函数,其中的导函数为,满足
对于恒成立,则(    )
  
  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的极小值点在(0,1)内,则实数的取值范围是(    )
A.(-1,0)B.(1,2)C.(-1,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.函数f(x)=x3+ax+1在(-,-1)上为增函数,在(-1,1)上为减函数,则f(1)为(   )
A.B.1C.D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的极值点;
(2)若直线过点且与曲线相切,求直线的方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)判断函数上的单调性(为自然对数的底);
(II)记的导函数,若函数在区间上存在极值,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3-(1+a)x2+4ax+24a,其中常数a>1.
(1)讨论f(x)的单调性;
(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案