精英家教网 > 高中数学 > 题目详情
6.设△ABC的内角A,B,c的对边分别为a,b,c,A=$\frac{π}{6}$.
(1)若B=$\frac{π}{4}$,求$\frac{b}{a}$;
(2)若B=$\frac{2π}{3}$,b=2$\sqrt{3}$,求BC边上的中线长.

分析 (1)由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$可得:$\frac{b}{a}$=$\frac{sinB}{sinA}$,利用特殊角的三角函数值即可求值.
(2)利用三角形内角和可求C,由正弦定理可解得c的值,在△ABD中,由余弦定理即可解得AD的值,即可得解.

解答 解:(1)∵A=$\frac{π}{6}$,B=$\frac{π}{4}$,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$可得:$\frac{b}{a}$=$\frac{sinB}{sinA}$=$\frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=$\sqrt{2}$…4分
(2)∵B=$\frac{2π}{3}$,b=2$\sqrt{3}$,A=$\frac{π}{6}$,C=π-A-B=$\frac{π}{6}$,
∴AB=BC,由正弦定理可得c=2,取BC中点D,在△ABD中,由余弦定理可得:AD2=AB2+BD2-2×AB×BD×cosB=7,
∴AD=$\sqrt{7}$,即BC边上的中线长为$\sqrt{7}$…12分

点评 本题主要考查了正弦定理,余弦定理,三角形内角和定理,特殊角的三角函数值的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若z=$\frac{3+2i}{i}$,则|$\overline{z}$-1|等于(  )
A.3B.5C.$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a=ln2,b=5${\;}^{-\frac{1}{2}}$,c=$\frac{1}{4}$${∫}_{1}^{π}$sinxdx,则a,b,c的大小关系(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“?x0∈R,x0+1<0或x02-x0>0”的否定形式是(  )
A.?x0∈R,x0+1≥0或$x_0^2-{x_0}≤0$B.?x∈R,x+1≥0或x2-x≤0
C.?x0∈R,x0+1≥0且$x_0^2-{x_0}≤0$D.?x∈R,x+1≥0且x2-x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列有关命题的叙述,
①若p∨q为真命题,则p∧q为真命题;
②“x>5”是“x2-4x-5>0”的充分不必要条件;
③“若x+y=0,则x,y互为相反数”的逆命题为真命题;
④命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”.
其中错误的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设a>0,b>1,若a+b=2,则$\frac{4}{a}$+$\frac{1}{b-1}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设i是虚数单位,则$\frac{{{{({1+i})}^3}}}{{{{({1-i})}^2}}}$=-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数$\frac{7-i}{1+i}$的共轭复数为(  )
A.-3+4iB.3+4iC.3-4iD.-3-4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设半径为3的圆C被直线l:x+y-4=0截得的弦AB的中点为P(3,1),且弦长$|{AB}|=2\sqrt{7}$,则圆C的标准方程(x-4)2+(y-2)2=9,或(x-2)2+y2=9.

查看答案和解析>>

同步练习册答案