【题目】已知椭圆:的离心率为,过左焦点的直线与椭圆交于,两点,且线段的中点为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为上一个动点,过点与椭圆只有一个公共点的直线为,过点与垂直的直线为,求证:与的交点在定直线上,并求出该定直线的方程.
【答案】(Ⅰ);(Ⅱ)证明见解析,,
【解析】
(Ⅰ)设,,根据点,都在椭圆上,代入椭圆方程两式相减,根据“设而不求”的思想,结合离心率以及中点坐标公式、直线的斜率建立等式即可求解.
(Ⅱ)设,由对称性,设,由,得椭圆上半部分的方程为,从而求出直线的方程,再由过点与垂直的直线为,求出,两方程联立,消去,即可求解.
(Ⅰ)由题可知,直线的斜率存在.
设,,由于点,都在椭圆上,
所以①,②,
①-②,化简得③
又因为离心率为,所以.
又因为直线过焦点,线段的中点为,
所以,,,
代入③式,得,解得.
再结合,解得,,
故所求椭圆的方程为.
(Ⅱ)证明:设,由对称性,设,由,得椭圆上半部分的方程为,,
又过点且与椭圆只有一个公共点,所以,
所以:,④
因为过点且与垂直,所以:,⑤
联立④⑤,消去,得,
又,所以,从而可得,
所以与的交点在定直线上.
科目:高中数学 来源: 题型:
【题目】已知e为自然对数的底数,设函数,则( ).
A. 当k=1时,f(x)在x=1处取到极小值 B. 当k=1时,f(x)在x=1处取到极大值
C. 当k=2时,f(x)在x=1处取到极小值 D. 当k=2时,f(x)在x=1处取到极大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棋盘上标有第、、、、站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第站或第站时,游戏结束.设棋子位于第站的概率为.
(1)当游戏开始时,若抛掷均匀硬币次后,求棋手所走步数之和的分布列与数学期望;
(2)证明:;
(3)求、的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)如图,在直角坐标系中,角的顶点是原点,始边与轴正半轴重合.终边交单位圆于点,且,将角的终边按逆时针方向旋转,交单位圆于点,记.
(1)若,求;
(2)分别过作轴的垂线,垂足依次为,记的面积为,的面积为,若,求角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,,若,当阳马体积最大时,则堑堵的外接球体积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).
(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?
(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的定义域,并判断的奇偶性;
(2)如果当时,的值域是,求与的值;
(3)对任意的,,是否存在,使得,若存在,求出;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com