精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,过左焦点的直线与椭圆交于两点,且线段的中点为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设上一个动点,过点与椭圆只有一个公共点的直线为,过点垂直的直线为,求证:的交点在定直线上,并求出该定直线的方程.

【答案】(Ⅰ);(Ⅱ)证明见解析,

【解析】

(Ⅰ)设,根据点都在椭圆上,代入椭圆方程两式相减,根据“设而不求”的思想,结合离心率以及中点坐标公式、直线的斜率建立等式即可求解.

(Ⅱ)设,由对称性,设,由,得椭圆上半部分的方程为,从而求出直线的方程,再由过点垂直的直线为,求出,两方程联立,消去,即可求解.

(Ⅰ)由题可知,直线的斜率存在.

,由于点都在椭圆上,

所以①,②,

-②,化简得

又因为离心率为,所以.

又因为直线过焦点,线段的中点为

所以

代入③式,得,解得.

再结合,解得

故所求椭圆的方程为.

(Ⅱ)证明:设,由对称性,设,由,得椭圆上半部分的方程为

过点且与椭圆只有一个公共点,所以

所以,④

因为过点且与垂直,所以,⑤

联立④⑤,消去,得

,所以,从而可得

所以的交点在定直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)讨论的单调区间;

2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知e为自然对数的底数,设函数,则( ).

A. k=1时,f(x)在x=1处取到极小值 B. k=1时,f(x)在x=1处取到极大值

C. k=2时,f(x)在x=1处取到极小值 D. k=2时,f(x)在x=1处取到极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棋盘上标有第站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第站或第站时,游戏结束.设棋子位于第站的概率为.

1)当游戏开始时,若抛掷均匀硬币次后,求棋手所走步数之和的分布列与数学期望;

2)证明:

3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分13分如图在直角坐标系的顶点是原点始边与轴正半轴重合终边交单位圆于点将角的终边按逆时针方向旋转交单位圆于点

1

2分别过轴的垂线垂足依次为的面积为的面积为求角的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中有这样一些数学用语,堑堵意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而阳马指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,,若,当阳马体积最大时,则堑堵的外接球体积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图),且倾斜时底面的一条棱始终在桌面上(图均为容器的纵截面).

1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?

2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定圆,动圆过点且与圆相切,记圆心的轨迹为.

1)求轨迹的方程;

2)设点上运动,关于原点对称,且,的面积最小时, 求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的定义域,并判断的奇偶性;

2)如果当时,的值域是,求的值;

3)对任意的,是否存在,使得,若存在,求出;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案