精英家教网 > 高中数学 > 题目详情

【题目】如图 是圆柱的上、下底面圆的直径, 是边长为2的正方形, 是底面圆周上不同于两点的一点, .

(1)求证: 平面

(2)求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:

(1)由题意结合几何关系可证得 ,结合线面垂直的判定定理即可证得题中的结论;

(2)建立空间直角坐标系,结合平面的法向量可得二面角的余弦值是

试题解析:

(1)由圆柱性质知: 平面

平面,∴

是底面圆的直径, 是底面圆周上不同于两点的一点,∴

平面

平面.

(2)解法1:过,垂足为,由圆柱性质知平面平面

平面,又过,垂足为,连接

即为所求的二面角的平面角的补角,

易得

由(1)知,∴

,∴

∴所求的二面角的余弦值为.

解法2:过在平面,建立如图所示的空间直角坐标系,

,∴,∴

平面的法向量为,设平面的法向量为

,即,取

∴所求的二面角的余弦值为.

解法3:如图,以为原点, 分别为轴, 轴,圆柱过点的母线为轴建立空间直角坐标系,则

是平面的一个法向量,

,即,令,则

是平面的一个法向量,

,即,令,则 .

∴所求的二面角的余弦值为.

解法4:由(1)知可建立如图所示的空间直角坐标系:

,∴,∴

设平面的法向量为,平面的法向量为

,取

.

∴所求的二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列函数:①y=x2+1;②y=﹣|x|;③y=( x;④y=log2x;
其中同时满足下列两个条件的函数的个数是(
条件一:定义在R上的偶函数;
条件二:对任意x1 , x2∈(0,+∞),(x1≠x2),有 <0.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣1,1),对任意x,y∈(﹣1,1),有f(x)+f(y)=f( ).且当x<0时,f(x)>0.
(1)验证函数f(x)=lg 是否满足这些条件;
(2)若f( )=1,f( )=2,且|a|<1,|b|<1,求f(a),f(b)的值.
(3)若f(﹣ )=1,试解关于x的方程f(x)=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=log (x2﹣9)的单调递增区间为(
A.(0,+∞)
B.(﹣∞,0)
C.(3,+∞)
D.(﹣∞,﹣3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式组 表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于1的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如表统计数据表:

收入x (万元)

8.2

8.6

10.0

11.3

11.9

支出y (万元)

6.2

7.5

8.0

8.5

9.8

根据如表可得回归直线方程y= x+ ,其中 =0.76, = ,据此估计,该社区一户收入为20万元家庭年支出为(
A.11.4万元
B.11.8万元
C.15.2万元
D.15.6万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(0,﹣4),且倾斜角为 ,圆C的极坐标方程为ρ=4cosθ.
(1)求直线l的参数方程和圆C的直角坐标方程;
(2)若直线l和圆C相交于A、B两点,求|PA||PB|及弦长|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是矩形, ⊥平面.

(1)求证: ⊥平面

(2)求二面角余弦值的大小;

查看答案和解析>>

同步练习册答案