精英家教网 > 高中数学 > 题目详情

【题目】已知函数

时,试判断函数在区间上的单调性,并证明;

若不等式上恒成立,求实数m的取值范围.

【答案】(1)见解析; (2).

【解析】

(1)根据函数单调性的证明的定义法,取值,做差,若 判符号;(2)方法一,将问题等价于 恒成立,转化为轴动区间定的问题;方法二,变量分离,转化为 恒成立,转化为函数求最值问题.

(1)当时,,此时上单调递增,证明如下:

对任意的,若

,故有:

因此:

故有上单调递增;

(2)方法一:不等式上恒成立

,对称轴

时,对称轴

上单调递增,

满足题意,

时,对称轴

上恒成立,

解得:

综上所述,实数的取值范围为.

方法二:不等式上恒成立

由结论:定义在上的函数,当且仅当取得最小值.

当且仅当,即时函数取得最小值.

,即实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥,四边形是正方形,

(1)证明:平面平面

(2)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知AB为圆O的直径,C,D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.

(1)求证:AC是∠DAB的平分线;
(2)求证:OF∥AG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a0且满足不等式22a+1>25a﹣2

(1)求实数a的取值范围;

(2)求不等式loga(3x+1)<loga(7﹣5x);

(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】广场舞是现代城市群众文化、娱乐发展的产物,其兼具文化性和社会性,是精神文明建设成果的一个重要指标和象征.2015年某高校社会实践小组对某小区跳广场舞的人的年龄进行了凋查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.

(1)估计在40名广场舞者中年龄分布在[40,70)的人数;
(2)求40名广场舞者年龄的中位数和平均数的估计值;
(3)若从年龄在[20,40)中的广场舞者中任取2名,求这两名广场舞者年龄在[30,40)中的人数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是R上的偶函数,其中e是自然对数的底数.

(1)求实数的值;

(2)探究函数上的单调性,并证明你的结论;

(3)若函数有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,有两种方式,甲为投资债券等稳健型产品,乙为投资股票等风险型产品,设投资甲、乙两种产品的年收益分别为万元,根据长期收益率市场预测,它们与投入资金万元的关系分别为,(其中都为常数),函数对应的曲线,如图所示

(1)求函数的解析式

(2)若该家庭现有万元资金,全部用于理财投资,问:如何分配资金能使一年的投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线 )的焦点为 ,已知点 为抛物线上的两个动点,且满足 .过弦 的中点 作抛物线准线的垂线 ,垂足为 ,则 的最大值为__________

【答案】1

【解析】,在三角形ABF中,用余弦定理得到

故最大值为1.

故答案为:1.

点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义。一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用。尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。

型】填空
束】
17

【题目】 的内角 所对的边分别为 ,且 .

(1)当 时,求 的值;

(2)当的面积为 时,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为奇函数,为偶函数,且

函数的解析式;

用函数单调性的定义证明:函数上是减函数

关于的方程有解,求实数的取值范围

查看答案和解析>>

同步练习册答案