如图,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求证:
(1)BF∥平面ACE;
(2)BF⊥BD.
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点.
⑴求证:平面PAD⊥面PBD;
⑵当Q在什么位置时,PA∥平面QBD?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°.
(1)求证:⊥平面;
(2)求二面角的余弦值;
(3)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C中点.求证:
(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.
(图①)
(图②)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在正方体ABCDA1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:
(1)BF∥HD1;
(2)EG∥平面BB1D1D.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD= AD.若E、F分别为PC、BD的中点,求证:
(1)EF∥平面PAD;
(2)EF⊥平面PDC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在三棱柱ABC A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.
(1)求证:平面A1BC⊥平面ACC1A1;
(2)如果D为AB的中点,求证:BC1∥平面A1CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com