精英家教网 > 高中数学 > 题目详情
19.如图,四边形ABCD为矩形,PB=20,BC=30,PA⊥平面ABCD.
(1)证明:平面PCD⊥平面PAD;
(2)当AB的长为多少时,面PAB与面PCD所成的二面角为60°?请说明理由.

分析 (1)推导出AB⊥AD,PA⊥AB,从而AB⊥平面PAD,再由AB∥CD,能证明平面PCD⊥平面PAD.
(2)以A为原点,AP,AB,AD所以直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出当AB的长为1时,面PAB与面PCD所成的二面角为60°.

解答 (本小题满分12分)
证明:(1)∵四边形为矩形,∴AB⊥AD,
∵PA⊥平面ABCD,∴PA⊥AB,且PA∩AD=A,
∴AB⊥平面PAD,
∵四边形ABCD为矩形,∴AB∥CD,
∴CD⊥平面PAD,
又因为CD?平面PCD,
∴平面PCD⊥平面PAD.…(6分)
解:(2)如图,以A为原点,AP,AB,AD所以直线分别为x轴,y轴,z轴建立空间直角坐标系,
设AB=a,则A(0,0,0),P($\sqrt{4-{a}^{2}}$,0,0),B(0,a,0),C(0,a,3),D(0,0,3)
$\overrightarrow{PC}$=(-$\sqrt{4-{a}^{2}}$,a,3),$\overrightarrow{PD}$=(-$\sqrt{4-{a}^{2}}$,0,3),
设平面PCD的法向量为$\overrightarrow{n}$=(x,y,z),则由$\overrightarrow{PC}$⊥$\overrightarrow{n}$,$\overrightarrow{PD}$⊥$\overrightarrow{n}$得:
-$\sqrt{4-{a}^{2}}$•x+ay+3z=0,-$\sqrt{4-{a}^{2}}$x+3z=0
∴$\overrightarrow{n}$=(3,0,-$\sqrt{4-{a}^{2}}$)
平面PAB的法向量为$\overrightarrow{m}$=(0,0,1)
又面PAB与面PCD所成的二面角为锐二面角,面PAB与面PCD所成的二面角为60°,
∴cos60°=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{\sqrt{4-{a}^{2}}}{\sqrt{13-{a}^{2}}}$,即:$\sqrt{13-{a}^{2}}$=2$\sqrt{4-{a}^{2}}$,
解得a=1
∴当AB的长为1时,面PAB与面PCD所成的二面角为60°.…(12分)

点评 本题考查面面垂直的证明,考查满足二面角为60°的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知△ABC的外接圆的圆心为O,半径为2,且$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,则向量$\overrightarrow{CA}$在向量$\overrightarrow{CB}$方向上的投影为(  )
A.3B.$\sqrt{3}$C.-3D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:任意x∈R,sinx≤1,则(  )
A.¬p:存在x∈R,sinx≥1B.¬p:任意x∈R,sinx≥1
C.¬p:存在x∈R,sinx>1D.¬p:任意x∈R,sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax3+bx+12在x=2处取得极值为-4.
(1)求a、b的值;
(2)求f(x)在[-3,3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a=2,则(1+ax)5的展开式中x3项的系数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知原命题“若a>b>0,则$\frac{1}{a}$<$\frac{1}{b}$”,则原命题,逆命题,否命题,逆否命题中真命题个数为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=n2-n(n∈N*).正项等比数列{bn}的首项b1=1,且3a2是b2,b3的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)若cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,既是偶函数又在区间(0,1)内单调递减的是(  )
A.y=x3B.y=2|x|C.y=cosxD.$y=lnx-\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax+lnx-1,其中a为常数
(1)当$a∈(-∞,-\frac{1}{e})$时,若f(x)在区间(0,e)上的最大值为-3,求a的值;
(2)当$a=-\frac{1}{e}$时,若$g(x)=|{f(x)}|-\frac{lnx}{x}-\frac{b}{2}$存在零点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案