精英家教网 > 高中数学 > 题目详情
精英家教网已知多面体ABC-DEFG中(如图),AB、AC、AD两两互相垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,则这个多面体的体积为(  )
A、2B、4C、6D、8
分析:如图,此多面体开关不规则,可以用分割法求体积,取DG中点M,连接CM,AM,FM,则这个多面体的体积可以表示为棱柱BEF-ADM与三棱锥C-FMG以及四棱锥C-ABFM的和
解答:精英家教网解:取DG中点M,连接CM,AM,FM,则这个多面体的体积可以表示为棱柱BEF-ADM与三棱锥C-FMG以及四棱锥C-ABFM的和
由于多面体ABC-DEFG中(如图),AB、AC、AD两两互相垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1
故棱柱BEF-ADM可看作是底面是直角三角形的三棱锥,其高2,底面是两直角边分别是1,2的三角形其体积是2×
1
2
×2×1=2
三棱锥C-FMG以CM为高,其长为2,底面是MF=2,MG=1为直角边的直角三角形,其体积为
1
3
×2×
1
2
×2×1=
2
3

由图形知,C到AM的距离就是四棱锥C-ABFM的高,由于AM=
5
,由等面积法可求得C到AM的距离是
2
5
5
,底面四边形是以AM=
5
与AB=2为边长的矩形,故其体积为
1
3
×
2
5
5
×2×
5
=
4
3

这个多面体的体积为
4
3
+
2
3
+2
=4
故选B.
点评:本题考查组合几何体的面积、体积问题,解答本题关键是根据几何体的形状对几何体进行分割,变成几个规则的几何体的体积的和,如本题转化为求棱柱,两个棱锥的体积的和.分割法是求不规则几何体的体积与面积时常用的方法.其特点是把不规则几何体的体积用几个规则的几何体的体积表示出来.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,DE⊥平面DBC,DE∥AB,BD=CD=BC=AB=2,F为BC的中点.
(Ⅰ)求证:DF⊥平面ABC;
(Ⅱ)求点D到平面EBC的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源:河南省安阳市2009届高三年级二模模拟试卷、数学试题(理科) 题型:013

已知多面体ABC-DEFG中(如图),AB、AC、AD两两互相垂直,平面ABC∥平面DEFG.平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,则这个多面体的体积为

[  ]

A.2

B.4

C.6

D.8

查看答案和解析>>

科目:高中数学 来源:2014届江西省高二第四次月考文科数学试卷(解析版) 题型:选择题

已知多面体ABC-DEFG,AB,AC,AD两两垂直,面ABC//面DEFG,面BEF//面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为(   )

A.2                B.4                C.6                D.8

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高二第二次月考文科数学试卷(解析版) 题型:选择题

已知多面体ABC-DEFG,AB,AC,AD两两垂直,面ABC//面DEFG,面BEF//面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为(    )

A.2             B.4             C.6             D.8

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省邯郸市高三质量检测数学试卷(文科)(解析版) 题型:解答题

如图,已知多面体ABCDE中,DE⊥平面DBC,DE∥AB,BD=CD=BC=AB=2,F为BC的中点.
(Ⅰ)求证:DF⊥平面ABC;
(Ⅱ)求点D到平面EBC的距离的取值范围.

查看答案和解析>>

同步练习册答案