精英家教网 > 高中数学 > 题目详情
精英家教网在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4,A为PD的中点,如图1.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且
SE
=
1
3
SD
,如图2.
(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的正切值;
(3)在线段BC上是否存在点F,使SF∥平面EAC?若存在,确定F的位置,若不存在,请说明理由.
分析:(法一)
(1)由题意可知,题图2中SA⊥AB①,易证BC⊥SA②,由①②根据直线与平面垂直的判定定理可得SA⊥平面ABCD;
(2)(三垂线法)由
SE
=
1
3
SD
考虑在AD上取一点O,使得 
AO
=
1
3
AD
,从而可得EO∥SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,∠EHO为二面角E-AC-D的平面角,在Rt△AHO中求解即可
(3)取BC中点F,所以
FM
MD
=
FC
AD
=
1
2
,又由题意
SE
ED
=
1
2

从而可得SF∥EM,所以有SF∥平面EAC
(法二:空间向量法)
(1)同法一
(2)以A为原点建立直角坐标系,易知平面ACD的法向为
AS
=(0,0,2)
,求平面EAC的法向量,代入公式求解即可
(3)由SF∥平面EAC,所以
SF
•n=0
,利用向量数量的坐标表示,可求
解答:解法一:(1)证明:在题图1中,由题意可知,BA⊥PD,ABCD为正方形,
所以在题图2中,SA⊥AB,SA=2,
四边形ABCD是边长为2的正方形,
因为SB⊥BC,AB⊥BC,
所以BC⊥平面SAB,(2分)
又SA?平面SAB,
所以BC⊥SA,
又SA⊥AB,
所以SA⊥平面ABCD,(4分)

精英家教网(2)在AD上取一点O,使
AO
=
1
3
AD
,连接EO.
因为
SE
=
1
3
SD
,所以EO∥SA
所以EO⊥平面ABCD,
过O作OH⊥AC交AC于H,连接EH,
则AC⊥平面EOH,
所以AC⊥EH.
所以∠EHO为二面角E-AC-D的平面角,EO=
2
3
SA=
4
3

在Rt△AHO中,∠HAO=45°,HO=AO•sin45°=
2
3
×
2
2
=
2
3
tan∠EHO=
EO
OH
=2
2

即二面角E-AC-D的正切值为2
2
.(9分)

精英家教网(3)当F为BC中点时,SF∥平面EAC,
理由如下:取BC的中点F,连接DF交AC于M,
连接EM,AD∥FC,
所以
FM
MD
=
FC
AD
=
1
2
,又由题意
SE
ED
=
1
2

SF∥EM,
所以SF∥平面EAC,即当F为BC的中点时,
SF∥平面EAC(12分)
解法二:(1)同方法一(4分)

精英家教网(2)如图,以A为原点建立直角坐标系,
A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),S(0,0,2),E(0,
2
3
4
3

易知平面ACD的法向为
AS
=(0,0,2)

设平面EAC的法向量为n=(x,y,z)
AC
=(2,2,0),
AE
=(0,
2
3
4
3
)

n•
AC
=0
n•
AE
=0

所以
x+y=0
y+2z=0
,可取
x=2
y=-2
z=1

所以n=(2,-2,1).(7分)
所以cos<n,
AS
>=
n•
AS
|n||
AS
|
=
2
2×3
=
1
3

所以tan<n,
AS
>=2
2

即二面角E-AC-D的正切值为2
2
.(9分)
(3)设存在F∈BC,
所以SF∥平面EAC,
设F(2,a,0)
所以
SF
=(2,a,-2)
,由SF∥平面EAC,
所以
SF
•n=0
,所以4-2a-2=0,
即a=1,即F(2,1,0)为BC的中点(12分)
点评:本题主要考查了空间直线与平面的位置关系:直线与平面平行及直线与平面平行的判定定理的运用,空角角中的二面角的平面角的作法及求解,利用向量的方法求解空间距离及空间角 的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中点.现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.
精英家教网
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求证:平面PAE⊥平面PDE;
(Ⅲ)在PA上找一点G,使得FG∥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4,A为PD的中点,如下左图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且
SE
=
1
3
SD
,M,N分别是线段AB,BC的中点,如右图.
(1)求证:SA⊥平面ABCD;
(2)求证:平面AEC∥平面SMN.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4
,A为PD的中点,如图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且
SE
=
1
3
SD
,如图.
(Ⅰ)求证:SA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省高三一诊模拟考试理科数学试卷 题型:解答题

在直角梯形PBCD中A为PD的中点,如下左图。,将沿AB折到的位置,使,点E在SD上,且,如下右图。

 (1)求证:平面ABCD;(2)求二面角E—AC—D的正切值.

 

查看答案和解析>>

同步练习册答案