精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
(
1
2
)x,x≤2
log2x,x>2
,则f(f(3))的值为
 
考点:函数的值
专题:函数的性质及应用
分析:利用分段函数的性质求解.
解答: 解:∵f(x)=
(
1
2
)x,x≤2
log2x,x>2

∴f(3)=log23,
f(f(3))=(
1
2
 log23=
1
3

故答案为:
1
3
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

小明早晨去上学,由于担心迟到被老师批评,所以一开始就跑步,等跑累了再走完余下的路程.如果用纵轴表示小明离学校的距离,横轴表示出发后的时间,则下列四个图形中比较符合小明走法的是哪一个呢?(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量X~N(1,4),且P(X≤a)=P(X>2),则实数a的值为(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知sinA+cosA=
1
5
,则△ABC为
 
三角形(在“锐角”、“直角”、“钝角”中,选择恰当的一种填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=(
2
2x+a
-1)是奇函数.
(1)求a的值;
(2)用单调性的定义证明f(x)在(-∞,+∞)上为减函数;
(3)若实数m满足f(1-2m)+f(
2m
3
+1)≤0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四面体ABCD中,E为AD中点,△ABC与△BCD都是边长为4的正三角形.
(1)求证:AD⊥BC;
(2)若AD=6,求点C到平面BDE的距离;
(3)若点D到平面ABC的距离为3,求二面角A-BC-D的大小;
(4)设二面角A-BC-D的大小为θ,那么θ为何值时,四面体A-BCD的体积最大,最大为多少?此时AD的长是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,直线x=t(t>0,且t≠1)与抛物线交于A,B两点(点A在第一象限),定点Q的坐标为(-1,0),直线QA与抛物线的另一个交点为点M.
(1)求证:点M,F,B三点共线;
(2)当2≤t≤3时,求
|MA|
|MB|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1+sin2x,sinx-cosx),
b
=(1,sinx+cosx),函数f(x)=
a
b

(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相应x的值;
(3)若f(θ)=
8
5
,求cos2(
π
4
-2θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
x2
(1)求函数f(x)的极值;
(2)若关于x的方程f(x)+2bx=0在区间(0,e]上恰有两个不同的实根,求实数b的最大值;
(3)若对任意x∈[
1
e
,1],不等式|a-2lnx|+ln[f′(x)+x]>0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案