精英家教网 > 高中数学 > 题目详情
10.设a=${∫}_{1}^{{e}^{2}}$$\frac{1}{x}$dx,则二项式(x2-$\frac{a}{x}$)5的展开式中x的系数为(  )
A.40B.-40C.80D.-80

分析 先求出定积分a的值,再利用二项展开式的通项公式,令x的指数等于1,求出r的值,即可计算结果.

解答 解:∵a=${∫}_{1}^{{e}^{2}}$$\frac{1}{x}$dx=lnx${|}_{1}^{{e}^{2}}$=lne2-ln1=2-0=2,
∴(x2-$\frac{a}{x}$)5=(x2-$\frac{2}{x}$)5的展开式的通项公式为:
Tr+1=${C}_{5}^{r}$•x2(5-r)•${(-\frac{2}{x})}^{r}$=${C}_{5}^{r}$•(-2)r•x10-3r
令10-3r=1,解得r=3,
∴(x2-$\frac{a}{x}$)5的展开式中含x项的系数为
${C}_{5}^{3}$•(-2)3=-80.
故选:D.

点评 本题考查了定积分的计算问题,也考查了二项展开式的通项公式与二项式系数的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图所示,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.
求证:
(1)直线PA∥平面DEF;
(2)PA⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设A={x∈R|$\frac{1}{x}$≥1},B={x∈R|ln(1-x)≤0},则“x∈A”是“x∈B”的(  )
A.充分不必要条件B.既不充分也不必要条件
C.充要条件D.必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=log4(ax-2x•k)(a>0,a≠1,k为常数),求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,则复数($\frac{1+i}{1-i}$)5的值为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x|x2-3x+2=0},集合B={x|x2-4x+a=0,a为常数},若B⊆A,则实数a的取值范围是:a≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2-2bx+1在(-∞,$\frac{1}{2}$]上为减函数的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在如图所示的四棱锥中,底面ABCD是平行四边形,AB=4,BC=2,∠BCD=60°,且PD⊥底面ABCD,点E是AB的中点,点F是PC上一点.
(1)若F是PC的中点,证明EF∥平面PAD;
(2)若EF⊥CD,求PF:FC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=alnx+bx2,若函数f(x)的图象在点(1,1)处的切线与y轴垂直,则实数a+b=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.-1

查看答案和解析>>

同步练习册答案