精英家教网 > 高中数学 > 题目详情
在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=
3
,则A到A1BD的距离为(  )
分析:先确定△A1BD的面积,再利用VA1-ABD=VA-A1BD可得A到A1BD的距离.
解答:解:由题意,△A1BD中,A1B=A1D=2,BD=
2
,∴△A1BD的面积为
1
2
×
2
×
4-
1
2
=
7
2

设A到A1BD的距离为h,则由VA1-ABD=VA-A1BD可得
1
3
×
1
2
×1×1×
3
=
1
3
×
7
2
×h
∴h=
21
7

故选A.
点评:本题考查点到面的距离的计算,解题的关键是利用等体积转化,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱柱ABCD-A1B1C1D1中,棱长AA1=2,AB=1,E是AA1的中点.
(Ⅰ)求证:A1C∥平面BDE;
(Ⅱ)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为CC1的中点.
求证:(1)AC1∥平面BDE;(2)A1E⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,M、N分别为B1B和A1D的中点.
(Ⅰ)求直线MN与平面ADD1A1所成角的大小;
(Ⅱ)求二面角A-MN-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区一模)在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD的边长为2,点P是CC1的中点,直线AP与平面BCC1B1成30°角,求异面直线BC1和AP所成角的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)在正四棱柱ABCD-A1B1C1D1中,E为AD中点,F为B1C1中点.
(Ⅰ)求证:A1F∥平面ECC1
(Ⅱ)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案