精英家教网 > 高中数学 > 题目详情
17.当$\sqrt{2-x}$有意义时,化简$\sqrt{{x}^{2}-4x+4}$-$\sqrt{{x}^{2}-6x+9}$.

分析 由已知得x≤2,由此利用完全平方和公式和绝对值的性质能求出$\sqrt{{x}^{2}-4x+4}$-$\sqrt{{x}^{2}-6x+9}$的值.

解答 解:∵$\sqrt{2-x}$有意义,
∴2-x≥0,解得x≤2,
∴$\sqrt{{x}^{2}-4x+4}$-$\sqrt{{x}^{2}-6x+9}$
=|x-2|-|x-3|
=(2-x)-(3-x)=-1.

点评 本题考查根式的化简求值,是基础题,解题时要认真审题,注意完全平方和公式和绝对值的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在矩形ABCD中,点M在线段BC上,点N在线段CD上.且AB=4.AD=2,MN=$\sqrt{5}$,则$\overrightarrow{AM}$$•\overrightarrow{AN}$的最小值是(  )
A.8B.10C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.任取x∈[-$\frac{π}{6}$,$\frac{π}{2}$],则使sinx+cosx∈[1,$\sqrt{2}$]的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|(x-a)[x-(a2+1)]>0},B={y|y=$\frac{1}{2}{x}^{2}$-x+$\frac{5}{2}$,0≤x≤3}.
(1)若A∩B=∅,求a的取值范围;
(2)当a取使得不等式x2+1≥ax恒成立的a的最小值时,求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ax3-bx+4,f(1)=7,则f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α是第二象限角,求$\frac{α}{2},\frac{α}{3}$是第几象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax+b(a≠0,a≠1)且y1=f(f(x))与y2=f(x)有交点P,求证:P点一定在曲线y=f(f(f(x)))上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的前n项和为Sn,a1=3,Sn=3an+1,则Sn=$3•(\frac{4}{3})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在三棱锥S-ABC中,SA⊥平面ABC,SA=4,底面△ABC是边长为3的正三角形,则三棱锥S-ABC的外接球的表面积为(  )
A.19πB.28πC.43πD.76π

查看答案和解析>>

同步练习册答案