精英家教网 > 高中数学 > 题目详情
19.已知$(lo{g}_{2}x)^{2}$-3log2x+2≤0,求函数y=4x-1-4•2x+2的最大值和最小值.

分析 由对数不等式的解法可得2≤x≤4,令t=2x(4≤t≤16),即有y=$\frac{1}{4}$t2-4t+2=$\frac{1}{4}$(t-8)2-14,运用二次函数的最值的求法,即可得到最值.

解答 解:由$(lo{g}_{2}x)^{2}$-3log2x+2≤0,解得1≤log2x≤2,
即有2≤x≤4,
令t=2x(4≤t≤16),
即有y=$\frac{1}{4}$t2-4t+2=$\frac{1}{4}$(t-8)2-14,
当t=8时,即x=3时,函数y的最小值为-14;
当t=16,即x=4时,函数取得最大值为2.

点评 本题考查对数不等式的解法,主要考查可化为二次函数的最值的求法,注意运用换元法和指数函数的单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的通项公式为an=2n+1,令bn=$\frac{1}{n}({a_1}+{a_2}+…+{a_n})$,则数列{bn}的前10项和T10=75.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的单调区间:
(1)y=cos(2x+$\frac{π}{6}$);
(2)y=3sin($\frac{π}{3}$-$\frac{x}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$\overrightarrow{a}$是非零向量,则下列各式中正确的是(  )
A.0•$\overrightarrow{a}$=0B.$\overrightarrow{a}$•$\overrightarrow{a}$=|$\overrightarrow{a}$|C.$\overrightarrow{a}$-$\overrightarrow{a}$=0D.0$\overrightarrow{a}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若做直线运动的物体在[t0,t0+△t]时间内位移的变化量△s=t03△t-3t02△t2+△t3,则该物体在t=t0时的瞬时速度v=t03

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.先化简,再求值:$\frac{2x}{x+1}$-$\frac{2x+6}{{x}^{2}-1}$÷$\frac{x+3}{{x}^{2}-2x+1}$,其中x=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若$\frac{π}{2}$<α<π,化简$\frac{cos(α-\frac{π}{2})}{si{n}^{2}(\frac{3π}{2}-α)\sqrt{1+ta{n}^{2}(3π+α)}}$-$\frac{sin(4π+α)\sqrt{1-si{n}^{2}(π+α)}}{co{s}^{2}(π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=-x2+1;当x>1时,f(x)=log2x.
(I)当x∈(-∞,-1)时,求满足方程f(x)+log4(-x)=6的x的值.
(Ⅱ)求y=f(x)在[0,t](t>0)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=sin2x的周期是π,函数y=sin(2x-$\frac{π}{6}$)的周期是π.

查看答案和解析>>

同步练习册答案