精英家教网 > 高中数学 > 题目详情
若直线x=t与函数y=sin(2x+
π
4
)和y=cos(2x+
π
4
)的图象分别交于P,Q两点,则|PQ|的最大值为(  )
分析:由于|PQ|=|sin(2t+
π
4
)-cos(2t+
π
4
)|=
2
|sin2t|,由此求得|PQ|的最大值.
解答:解:由于PQ=|sin(2t+
π
4
)-cos(2t+
π
4
)|=
2
|sin2t|≤
2

故|PQ|的最大值为
2

故选D.
点评:本题主要考查两角和差的正弦、余弦公式的应用,三角函数的最值以及求法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(x2,y-cx)
n
=(1,x+b)
m
n
,(x,y,b,c∈R),且把其中x,y所满足的关系式记为y=f(x),若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
b
a
和c的值;
(Ⅱ)若函数f(x)在[
a
2
a2]
上单调递减,求b的取值范围;
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通三模)已知函数f(x)=
ax2-2x-1,x≥0
x2+bx+c,x<0
是偶函数,直线y=t与函数y=f(x)的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为
-
7
4
-
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成图形的面积;
(3)若直线x=-t(0<t<1)把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)若直线x=-t(0<t<1把y=f(x))的图象与两坐标轴所围成图形的面积二等分,求t的值.

查看答案和解析>>

同步练习册答案