精英家教网 > 高中数学 > 题目详情
设偶函数f(x)对任意x∈R,都有f(x+3)=-f(x),且当x∈[0,1]时,f(x)=
x
5
,则f(5)=(  )
A、10
B、-10
C、
1
5
D、-
1
5
考点:函数的值
专题:函数的性质及应用
分析:由f(x+3)=-f(x),f(x+6)=-f(x+3)=f(x),由此能求出f(5)=f(-1)=f(1)=
1
5
解答: 解:∵函数f(x)对任意x∈R,都有f(x+3)=-f(x),
且当x∈[0,1]时,f(x)=
x
5

∴f(x+6)=-f(x+3)=f(x),
∴f(5)=f(-1)=f(1)=
1
5

故选:C.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的参数方程为
x=2+2cosθ
y=-
3
+2sinθ
(θ为参数)在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(
2
3
3
π
2
).
(1)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(2)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,1),
b
=(x,1),
u
=
a
+2
b
v
=2
a
-
b

(Ⅰ)若
u
v
,求x;
(Ⅱ)若(
a
+
b
)⊥(
a
-
b
),求x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=4,且
a
b
=-2,则
a
b
所成的夹角为(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
6-x
-3x在区间[2,4]上的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数值域
(1)f(x)=3x+5(x∈[-1,3]);
(2)f(x)=
x+3
x+1
(x>1).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=|x|和g(x)=x(4-x)的递增区间依次是(  )
A、(-∞,0],(-∞,2]
B、(-∞,0],[2,+∞)
C、[0,+∞],(-∞,2]
D、[0,+∞),[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为△ABC的三边,B=120°,则a2+c2+ac-b2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a、b、c是角A、B、C所对的边,a2=b2+c2-ab,则角A等于
 

查看答案和解析>>

同步练习册答案