精英家教网 > 高中数学 > 题目详情
(本题满分14分)已知为定义在上的奇函数,当时,
(1)求上的解析式;
(2)试判断函数在区间上的单调性,并给出证明.
(1)(2)函数在区间上为单调减函数,证明见解析

试题分析:(1)当时,
所以
                                  ……6分
(2)函数在区间上为单调减函数.
证明:设是区间上的任意两个实数,且

因为,
所以 即.
所以函数在区间上为单调减函数.                                  ……14分
点评:此题第一问求解析式时,不要忘记,证明函数的单调性,只能用单调性的定义或导数(选修中将会学到).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0<x<1时f(x)<0,且对任意xy∈(-1,1)都有f(x)+f(y)=f(),试证明:
(1)f(x)为奇函数;
(2)f(x)在(-1,1)上单调递减.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)某公司将进货单价为8元一个的商品按10元一个销售,每天可卖出100个,若这种商品的销售价每个上涨1元,则销售量就减少10个.
(1)求函数解析式;
(1)求销售价为13元时每天的销售利润;
(2)如果销售利润为360元,那么销售价上涨了几元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为的函数有四个单调区间,则实数满足( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分) 已知是方程的两个不等实根,函数的定义域为
⑴当时,求函数的值域;
⑵证明:函数在其定义域上是增函数;
⑶在(1)的条件下,设函数
若对任意的,总存在,使得成立,
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)某市“环保提案”对某处的环境状况进行了实地调研,据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为.现已知相距两家化工厂(污染源)的污染强度分别为正数,,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设.
(1) 试将表示为的函数;
(2) 若时,处取得最小值,试求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数满足,当时,,若函数至少有6个零点,则的取值范围是    (      )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

长为6米、宽为4米的矩形,当长增加米,且宽减少米时面积最大,此时宽减少了________米,面积取得了最大值。

查看答案和解析>>

同步练习册答案