分析 (I)由频率分布直方图可得:20×(0.019+4a+2a+a+0.003)=1,由此求得a的值.
(II)分别求得成绩在[50,70)的人数,成绩在[130,150)的人数;分类讨论求得满足|m-n|>20的基本事件的个数,求得所有的基本事件的个数,即可求得事件“|m-n|>20”的概率.
解答 解:(I)由频率分布直方图可得:20×(0.019+4a+2a+a+0.003)=1,
解之得:a=0.004.
(II)由直方图可知,成绩在[50,70)的人数为50×20×0.003=3(人),设这3个人分别为x,y,z;
成绩在[130,150)的人数为50×20×0.004=4(人),设这4个人为为A,B,C,D.
当m,n∈[50,70)时,有xy,yz,xz,共3种情况;
当m,n∈[130,150)时,由AB,AC,AD,BC,BD,CD,6种情况;
当m,n分别在[50,70)和[130,150)内时,xA,xB,xC,xD,…,zD,12种情况,
故所有的基本事件共有3+6+12=21种,
故事件“|m-n|>20”所包含的基本事件有12种,
所以$P({|m-n|>20})=\frac{12}{21}=\frac{4}{7}$.
点评 本题主要考查频率分布直方图,古典概率及其计算公式,体现了分类讨论的数学思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{π}{6}$ | B. | $\frac{π}{12}$ | C. | -$\frac{π}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com