精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin2ωx+2 cosωxsinωx+sin(ωx+ )sin(ωx﹣ )(ω>0),且f(x)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间(0,π)上的单调增区间.

【答案】
(1)解:f(x)=sin2ωx+2 cosωxsinωx+sin(ωx+ )sin(ωx﹣ ),

= + sin2ωx﹣ (cos2ωx﹣sin2ωx),

=

由题意得 ,即可得ω=1


(2)解:由(1)知

则由函数单调递增性可知:

整理得:

∴f(x)在(0,π)上的增区间为


【解析】(1)利用辅助角公式及二倍角公式求得f(x),由函数的周期公式,即可求得ω的值;(2)由(1)可知,利用函数的单调性,求得 ,即可求得f(x)在区间(0,π)上的单调增区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解学生身高情况,某校以 的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为 ,测得男生身高情况的频率分布直方图(如图所示):

(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);
(2)从样本中身高在 之间的男生中任选2人,求至少有1人身高在 之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上. (I)求证:BC⊥平面ACFE;
(II)当EM为何值时,AM∥平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2﹣2(a+1)x+3(a∈R).
(1)若函数f(x)在 单调递减,求实数a的取值范围;
(2)令h(x)= ,若存在 ,使得|h(x1)﹣h(x2)|≥ 成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若抛物线y2=2px上恒有关于直线x+y﹣1=0对称的两点A,B,则p的取值范围是(
A.(﹣ ,0)
B.(0,
C.(0,
D.(﹣∞,0)∪( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a(|sinx|+|cosx|)﹣ sin2x﹣1,若f( )=
(1)求a的值,并写出函数f(x)的最小正周期(不需证明);
(2)是否存在正整数k,使得函数f(x)在区间[0,kπ]内恰有2017个零点?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,给出以下结论: ①直线A1B与B1C所成的角为60°;
②若M是线段AC1上的动点,则直线CM与平面BC1D所成角的正弦值的取值范围是
③若P,Q是线段AC上的动点,且PQ=1,则四面体B1D1PQ的体积恒为
其中,正确结论的个数是(

A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R). (Ⅰ) 若a=1,求直线y=x被圆C所截得的弦长;
(Ⅱ) 若a>1,如图,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M的动直线l与圆O:x2+y2=4相交于A,B两点.问:是否存在实数a,使得对任意的直线l均有∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=| ﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为(
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]

查看答案和解析>>

同步练习册答案