精英家教网 > 高中数学 > 题目详情

已知函数,其中为实数.
(1)当时,求函数在区间上的最大值和最小值;
(2)若对一切的实数,有恒成立,其中的导函数,求实数的取值范围.

(1)在区间上最小值为,最大值为;(2).

解析试题分析:(1)当时,,求出函数 的导函数,判断的单调性,即可求出函数最大值和最小值;
(2)由题目条件得:对任意的都成立,后按三种情况,对进行分类讨论去绝对值,能够求出的取值范围.
(1)时,                    
,得
,得
,得,                  
上单调递增;单调递减;

.
                       
在区间上最小值为,最大值为 
(2)由条件有:
①当时,
②当时,,即时恒成立
因为,当时等号成立.
所以,即                     
③当时,,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.若曲线在点处的切线与直线垂直,
(1)求实数的值;
(2)求函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数()
(1)当a=2时,求在区间[e,e2]上的最大值和最小值;
(2)如果函数在公共定义域D上,满足<<,那么就称的“伴随函数”.已知函数,若在区间(1,+∞)上,函数的“伴随函数”,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数内单调递增,求的取值范围;
(2)若函数处取得极小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量 (单位:千克)与销售价格 (单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)
(1)设(弧度),将绿化带总长度表示为的函数
(2)试确定的值,使得绿化带总长度最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数.
(1)若处的切线与直线垂直,求的值;
(2)求上的最小值;
(3)试探究能否存在区间,使得在区间上具有相同的单调性?若能存在,说明区间的特点,并指出在区间上的单调性;若不能存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数处取得极值,求的值;
(2)若函数的图象上存在两点关于原点对称,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间;
(2)证明:对任意的,存在唯一的,使
(3)设(2)中所确定的关于的函数为,证明:当时,有.

查看答案和解析>>

同步练习册答案