【题目】如图所示,在平行四边形ABCD中,,,,点E是CD边的中点,将沿AE折起,使点D到达点P的位置,且.
(1)求证;平面平面ABCE;
(2)求点E到平面PAB的距离.
【答案】(1)见解析;(2)
【解析】
(1)推导出,,从而平面PAE,由此能证明平面平面ABCE.
(2)推导出,平面PAE,以E为原点,EA,EB,EP为x,y,z轴,建立空间直角坐标系,利用向量法能求出点E到平面PAB的距离.
(1)∵在平行四边形ABCD中,,,,
点E是CD边的中点,将沿AE折起,
使点D到达点P的位置,且.
∴,
∴,
∵,∴,
∵,∴平面PAE,
∵平面ABCE,∴平面平面ABCE.
解:(2)∵,,,
∴,∴.
∵平面PAE,,
∴平面PAE,
∴EA,EC,EP两两垂直,
以E为原点,EA,EB,EP为x,y,轴,建立空间直角坐标系,
则,
,,
设平面PAB的法向量,
则,
取,得,
∴点E到平面PAB的距离.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,右焦点为,直线与轴相交于点,且是的中点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点的直线与椭圆相交于两点,都在轴上方,并且在之间,且到直线的距离是到直线距离的倍.
①记的面积分别为,求;
②若原点到直线的距离为,求椭圆方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,直线与抛物线C交于A,B两点,若,则.
(1)求抛物线C的方程;
(2)分别过点A,B作抛物线C的切线、,若,分别交x轴于点M,N,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线与抛物线在第一象限的交点为,点A,B分别在抛物线,上,,分别与,相切.
(1)当点M的纵坐标为4时,求抛物线的方程;
(2)若,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com