精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面平面,点在棱上,且.

(Ⅰ)求证:

(Ⅱ)是否存在实数,使得二面角的余弦值为?若存在,求出实数的值;若不存在,请说明理由.

【答案】(Ⅰ)见解析;(Ⅱ).

【解析】试题分析:(1)由边长和勾股定理得又平面平面,由定理证得平面 (2) 建立空间直角坐标系, 得出平面的一个法向量为

,设平面的一个法向量为,由题意计算得出结果

解析:(Ⅰ)过点

四边形为正方形,且

中,,在中,

又平面平面,平面平面

平面

平面,且

平面

(Ⅱ)

又平面平面,平面平面

平面

以点为坐标原点,所在直线为坐标轴建立空间直角坐标系,

假设存在实数使得二面角的余弦值为,令

在棱上,

平面平面的一个法向量为

设平面的一个法向量为

化简得

存在实数使得二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系.已知直线的参数方程是是参数),圆的极坐标方程为.

(1)求圆心的直角坐标;

(2)由直线上的点向圆引切线,并切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为,离心率.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(其中).

(1)求函数的单调区间;

(2)当时,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直角坐标系中动点,参数,在以原点为极点、轴正半轴为极轴所建立的极坐标系中,动点在曲线上.

(1)求点的轨迹的普通方程和曲线的直角坐标方程;

(2)若动点的轨迹和曲线有两个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.

(1)求的方程;

(2)若动点在直线上,过作直线交椭圆两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的左、右焦点分别为,过作垂直于轴的直线与椭圆在第一象限交于点,若,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)是椭圆上位于直线两侧的两点.若直线过点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为,(t为参数),在以原点O为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为两点的极坐标分别为.

(1)求圆的普通方程和直线的直角坐标方程;

(2)是圆上任一点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量

)求函数的单增区间.

)若,求值.

)在中,角的对边分别是.且满足,求函数的取值范围.

查看答案和解析>>

同步练习册答案