精英家教网 > 高中数学 > 题目详情
2.设数列{an},{bn}分别为等差数列和等比数列.若a1b1=1,a2b2=1,则a3b3的取值范围是(-∞,0)∪(0,1].

分析 分别设{an}公差为d,{bn}公比为q,通过整体运算把a3b3转化为q的函数得答案.

解答 解:设{an}公差为d,{bn}公比为q,
由a1b1=1,a2b2=1,得a2b2=(a1+d)(b1q)=a1b1q+b1dq=q+b1dq=1,
∴b1dq=1-q,
${a}_{3}{b}_{3}=({a}_{1}+2d)({b}_{1}{q}^{2})$
=${a}_{1}{b}_{1}{q}^{2}+2d{b}_{1}{q}^{2}$=${q}^{2}+2d{b}_{1}{q}^{2}$
=${q}^{2}+2(d{b}_{1}q)•q={q}^{2}+2q(1-q)={q}^{2}+2q-2{q}^{2}$=-q2+2q=-(q-1)2+1≤1.
而q≠0,∴a3b3≠0,
∴a3b3∈(-∞,0)∪(0,1].
故答案为:(-∞,0)∪(0,1].

点评 本题考查等差数列和等比数列的通项公式,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求A∪B;
(2)求(∁RA)∩B;
(3)若A∩C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn,已知${a_1}=1,{a_{n+1}}=3{S_n}+1,n∈{N^*}$.
(1)求a2,a3的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当P沿着A-B-C-M运动时,以点P经过的路程x为自变量,三角形APM的面积为y,函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设变量x,y满足$\left\{\begin{array}{l}x+y≤1\\ x≥0\\ y≥0\end{array}\right.$则点P(x+y,x-y)所在区域的面积为(  )
A.2B.1C.$\frac{1}{2}$1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从一副没有大小王的52张扑克牌中随机抽取1张,事件A为“抽得红桃8”,事件B为“抽得为黑桃”,则事件“A或B”发生的概率值是$\frac{7}{26}$(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“x<0”是“x2+x<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.线性回归方程表示的直线=a+bx,必定过(  )
A.(0,0)点B.( $\overline{x}$,$\overline{y}$) 点C.(0,$\overline{y}$)点D.( $\overline{x}$,0)点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的四棱锥S-ABCD中,∠DAB=∠ABC=90°,SA=AB=BC=1,AD=3.
(1)在棱SA上确定一点M,使得BM∥平面SCD,保留作图痕迹,并证明你的结论.
(2)当SA⊥平面ABCD且点E为线段BS的三等分点(靠近B)时,求三棱锥S-AEC的体积.

查看答案和解析>>

同步练习册答案