精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥中,平面的中点,的中点,点上,

1)证明:平面平面

2)证明:平面

3)求二面角的正弦值.

【答案】1)见解析;(2)见解析;(3.

【解析】

1)利用余弦定理计算出,由勾股定理可得出,再由平面,可得出,利用直线与平面垂直的判定定理可证明出平面,然后利用平面与平面垂直的判定定理可证明出平面平面

2)证法一:过点于点,取的中点,连接,证明四边形为平行四边形,可得出,然后利用直线与平面平行的判定定理可证明出平面

证法二:取中点,连接,证明平面平面,即可得出平面

3)过点,垂足为,在直角中过点,垂足为,证明出平面,可知二面角的平面角为,计算出中的,然后利用锐角三角函数的定义求出即可.

1)在中,由余弦定理得

,解得,则.

因为平面平面,所以.

平面平面.

平面平面平面

2)证法一:过点于点,取的中点,连接

的中点,的中点,

的中点,的中点,点上,,且

所以四边形为平行四边形,

平面平面平面

法二:取中点,连接

分别为的中点,.

平面平面平面.

的中点,的中点,,则

,即.

平面平面平面.

因为,所以平面平面

平面,所以平面

3)过点,垂足为,在平面内过点,垂足为

平面平面

平面

平面

平面

平面,则为二面角的平面角,

由等面积法可得

平面平面

中,

由等面积法得,则.

因此,二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.程度2019年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到下边频率分布直方图,且规定计分规则如下表:

每分钟跳绳个数

得分

17

18

19

20

(Ⅰ)现从样本的100名学生中,任意选取2人,求两人得分之和不大于35分的概率;;

(Ⅱ)若该校初三年级所有学生的跳绳个数服从正态分布,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差(各组数据用中点值代替).根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:

预计全年级恰有2000名学生,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)

若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195以上的人数为ξ,求随机变量的分布列和期望.

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,两个焦点与短轴一个顶点构成等腰直角三角形,过点且与x轴不重合的直线l与椭圆交于M,N不同的两点.

(Ⅰ)求椭圆P的方程;

(Ⅱ)当AM与MN垂直时,求AM的长;

(Ⅲ)若过点P且平行于AM的直线交直线于点Q,求证:直线NQ恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,直线)与椭圆交于两点(点轴的上方).

1)若,求的面积;

2)是否存在实数使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地日到日均值(单位:)的统计数据,则下列叙述不正确的是(

A.日到日,日均值逐渐降低

B.天的日均值的中位数是

C.天中日均值的平均数是

D.从这天的日均监测数据中随机抽出一天的数据,空气质量为一级的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是半正多面体(图1.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】月,电影《毒液》在中国上映,为了了解江西观众的满意度,某影院随机调查了本市观看影片的观众,现从调查人群中随机抽取部分观众.并用如图所示的表格记录了他们的满意度分数(分制),若分数不低于分,则称该观众为“满意观众”,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.

组别

分组

频数

频率

合计

1)写出的值;

2)画出频率分布直方图,估算中位数;

3)在选取的样本中,从满意观众中随机抽取名观众领取奖品,求所抽取的名观众中至少有名观众来自第组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.证明:

1存在唯一的极值点;

2有且仅有两个实根,且两个实根互为倒数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来某企业每年消耗电费约24万元为了节能减排决定安装一个可使用15年的太阳能供电设备接入本企业电网安装这种供电设备的工本费(单位万元)与太阳能电池板的面积(单位平方米)成正比比例系数约为0.5为了保证正常用电安装后采用太阳能和电能互补供电的模式假设在此模式下安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和

(1)试解释的实际意义并建立关于的函数关系式

(2)为多少平方米时取得最小值最小值是多少万元

查看答案和解析>>

同步练习册答案